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Characterization of the Thermalness of a Fissile System with a

2-Group Diffusion Theory Parameter

Brent Bryce Bredehoft

B.S., United States Military Academy, 1983

M.S. Nuclear Engineering, Univ. of New Mexico, 1991

In tabulating critical data, the hydrogen to fissile atoms ratio,

H/X, is commonly used to specify the amount of moderation in a

system. Though adequate in many cases, H/X does not account for

the moderating contribution of other light nuclei contained in

common uranium-moderator mixtures. This ratio also does not

account for enrichment of the system, which affects the resonance

absorption characteristics and, therefore, the moderating

characteristics of that system.

We used a two energy group diffusion theory analogy to the

six-factor formula to define the parameter P/( 1 2 *f 2 ) as

appropriate for describing the moderation characteristics, or the

"thermalness" of a fissioning system. The neutron slowing down

process and system enrichment are adequately described by the

resonance escape probability, p. The absorption characteristics of

the system, particularly the effectiveness of neutrons in causing

fission versus non-fission capture, are encompassed in the 112 and

f2 factors. Therefore, the important details in describing
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moderation are contained in the thermalness factor p/(7i 2 *f 2 ).

Plots of the thermalness factor versus critical mass and volume

serve to predict minimum critical mass and volume for moderated

systems and indicate optimum moderation characteristics.

In this study we evaluated several low enriched uranium

systems with different hydrogenous moderators. The systems were

originally modeled using the transport theory code, TWODANT with

the Hansen-Roach 16-group cross section set. The 16-group cross

sections were group collapsed, using TWODANT derived fluxes, into

the 2-group cross sections used for determining p/(712 *f2 ).

From our analysis we found that the values of P/(712*f 2 ) have a

narrower range than the values of H/X corresponding to minimum

critical mass and volume for different systems. Also, P/(TI2 *f2 )

does not vary with the addition of a reflector and is applicable to

systems with other than hydrogenous moderators. Based on these

results, the thermalness parameter p/(,1 2 *f2 ) provides an effective

means of characterizing moderated systems in terms of optimum

conditions.
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1. INTRODUCTION.

In any system containing fissile material, a very important

consideration is the amount of moderation. Moderation is the act of

slowing down neutrons and is a multifaceted process, depending on

the type and amount of scattering material in the system. However,

the effectiveness of a moderator also depends on a lack of

absorption during the scattering process. This suggests that the

"thermalness" of a system depends on the amount and type of fuel as

well as the moderator characteristics.

In tabulating critical data, the hydrogen to fissile atom ratio

[H/X] is commonly used to specify the amount of moderation in a

system. Though adequate for systems with hydrogen, H/X does not

take into account the moderating contribution of other light nuclei

contained in the system. Unquestionable is hydrogen's superior

moderating capability, but carbon, oxygen, and several other light

nuclei contained in common uranium-moderator mixtures do

contribute to the slowing down of neutrons. For example, sterotex

(glycerol tristearate or (C1 7 H3 5 COO) 3 C3 H5 ) and polyethylene (CH 2 )

have carbon in sufficient quantity to greatly add to neutron

moderation. Other mixtures such as U3 0 8 -sterotex have oxygen in

enough quantity to provide additional moderation.

H/X also neglects the enrichment of the fuel. Enrichment

specifies, for one thing, how much U2 3 8 is in the system. This is a

very important parameter in moderated systems since neutrons



have to escape the large resonance absorption of U2 3 8 . Similarly,

H/X tells us nothing about any kind of absorption in the system. The

effectiveness of a moderator is a measure of its ability to scatter

without absorbing neutrons. Expand this to a complete, moderated

system and the effectiveness is then a measure of scattering from

all isotopes in the system without unfavorable absorption ( a

favorable absorption is a fission interaction, though a thermal

fission is preferred to a fast fission).

This study looks at the use of parameters, other than H/X, to

describe the "thermalness" of systems, where we describe

"thermalness" as the degree of moderator effectiveness. It

specifically tries to find a parameter which will be useful in

predicting a minimum critical volume and mass for different

fuel-moderator mixtures. As with tabulation and plotting of

critical experiments based on H/X, examples of which are shown in

Figures 1 and 2, our parameter must have the parabolic shape that

leads to a minimum critical mass and volume. In Figures 1 and 2 we

see a that the minimum critical volumes and masses appear over a

wide range of H/Xs. Apparently, minimum volume and mass are a

widely varying function of H/X, enrichment, and type of

fuel-moderator mixture. The objective of this effort is to identify

a parameter which will narrow this range and remove the

dependence on enrichment and type of fuel-moderator mixture.

Predicting minimum critical volumes and masses has become a

relatively simpie task with the use of modern computers and
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computer codes. However, we desire a simple parameter that can be

readily and accurately derived by hand calculations. It is hoped that

such a parameter will provide insight into the character of a very

thermal system with a highly effective moderator.

100~
- ___ i~V ,I 1 *.. 1-I U(2)f.-PARAFFIN

_________ C U(3)F.-PARAFFIN

I x
_____ - I0 U(30O3W SOLUTION

V U(93)OjF# SOLUTION

_____ - X CALCULATED UOV,-WATER

xx

X

C) x

__ ~~ - I ) 'T__

0.8-1
20 100 500 1000 2000

H 1
35U ATOMIC RATIO

Figure 1, Critical masses of water-reflected spheres of hydrogen-
moderated U(93), U(30.3), U(5.00), U(3.00), and U(2.00). [From p.37,
Reference 1]

3



5000-:1

ILA U(Z2W.-PARAFFIN IX-X

0 U(5)0,Fa SOLUTION

X_____ 0) W3)Ft SOLUTON

1000- -10 U(903)OF SOLUTION

421121 iII X CALCULATED UO,F,-WATER

4 2' '

3 __

L) 100 _ _

10 V I r

5 ______________________ f f I _ ________

20 100 1000 2000

H/236U ATOMIC RATIo

Figure 2, Critical volumes of water-reflected spheres of hydrogen-
moderated U(93), U(30.3), U(5.00), U(3.00), and U(2.00). (From p.38,
Reference 1].

As will be explained in detailed in this report, we have selected

a 2-group diffusion theory analogy to the six-factor formula for

calculating the parameter p/(,n2*f 2 ), which meets all of the

criteria desired in describing moderating capability. The 2-group

cross sections are group collapsed from the Hansen-Roach 16-group

cross section set. The transport theory code TWODANT is used to

develop the weighting functions and spectrum calculations needed

for the group collapses.
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2. DEVELOPMENT OF THE PARAMETER TO DESCRIBE

MODERATING CAPABILITY.

Moderation is the process of slowing down neutrons from fission

energies (100KeV-10MeV) to thermal energies (on the order of 10-2

eV). The scattering interaction, where neutrons loose a fraction of

their energy, is the primary mechanism for this process. However,

during the slowing down process there are ways that the neutrons

can be lost and this is also an important effect in describing how

well a system is moderated. The main method of neutron loss

during slowing down is absorption. No matter how well a system

does in scattering and hence slowing down neutrons, if the neutron

is absorbed in a non-fissioning interaction the system is not well

moderated. Resonance absorption is one of the biggest obstacles in

neutron moderation. The large magnitude of the resonance

absorption cross sections makes it very important to consider how

well this is avoided when describing moderated systems. In

uranium systems U2 3 8 is the dominate resonance absorber.

Therefore, when discussing the moderation process the amount of

U 2 3 8 , a factor of enrichment, is a very important consideration.

With these factors in mind we will now select a parameter that

encompasses all of the important characteristics in describing the

moderating capability of uranium systems.

In describing moderation, other parameters besides H/X are

often used to compare moderators. Two of these are:



Moderating power (1)

and

Moderating ratio = (2)

These were developed primarily to compare moderators but can be

used to compare complete systems if the lethargy gain, 4, and the

macroscopic cross sections, ,, represent total system values rather

than moderator values.

Moderating power does not incorporate the absorption

characteristics of the moderator or system and is, therefore,

incapable of meeting our requirements. The moderating ratio does

consider absorption and in a sense also considers enrichment as the

la will reflect the isotope concentrations. However, as a one

energy group parameter, it does not adequately describe

interactions in the resonance region.

Looking for an easily calculable parameter that will adequately

address scattering, absorption, and ability to escape resonance

absorption, we are drawn to the six-factor formula for Keff. The

six-factor formula is a one group analysis, but provides parameters

which attempt to describe the interactions at fast energies and in

the resonance region. The factors in this formula,

6



T! = number of neutrons produced per neutron absorbed in fuel, (3)

f = utilization factor (number of neutrons absorbed in fuel per neutron

absorbed in the system), (4)

C = fast fission factor (number of neutrons produced by fissions from

fast and thermal neutrons per number of neutrons produced by
fissions from thermal neutrons), (5)

p = resonance escape probability (probability that a fission neutron

successfully slows down to thermal energies), (6)

PNLf = probability of non-leakage of fast neutrons, (7)

PNLt = probability of non-leakage of thermal neutrons, (8)

cover all of the requirements we are looking for. The resonance

escape probability is a measure of how important resonance

absorption is in the system. 11 and f tell us how effectively we use

the thermal neutrons and therefore account for the absorption and

production properties of the system. The non-leakage probabilities

indirectly express the effectiveness of the system at slowing down

neutrons. The more moderation taking place the less the chance is

the neutron will leak prior to being absorbed.

The six-factor formula, however, is based on a one group model.

A one group model is not always appropriate for determining

7



moderation characteristics of a system, since by definition,

moderation involves the slowing down of neutrons from higher to

lower energies. It is probably appropriate for true thermal systems

and for comparing sizes of systems for various moderators. As a

first approximation it is very good. For a better description of the

process, a multigroup approach seems neccessary. However, using

more than two energy groups makes the six-factor formula

cumbersome and effectively useless. What we will do is use a

two-group diffusion theory approach and draw an analogy to the

six-factor formula. This results in definitions of the factors for

the six factor formula based on two group variables.

2.1 Derivation of the Two Group Diffusion Theory

Equations.

The steady state multigroup diffusion equation is,

g-1 G

-V'DgVg+Y-R8 g =Y Y-sg'-g~gj+-;Xg Y Vg'°ifg'Og', (9)
g'=1 g'= I

where Dg = the diffusion coefficient for group g,

XRg = the Macroscopic removal cross section for group g

(-Rg = -tg - ,-sg-g),

Xsg,_g =the macroscopic in-scatter cross section for group g

from group g',

k = the multiplication factor,

8



g= the fraction of fission neutrons created whose

energies lie within group g,

Vg, = the average number of fission neutrons from each

fission event for group g',

,fg = the macroscopic fission cross section for group g,

and we have assumed no upscattering occurs.

For the development of the two group analysis, we define

01(r) = dE_(r,E) a FAST GROUP FLUX, (10)

0(r) EdE(r,E) a THERMAL GROUP FLUX, (11)

where Eo , E1 , and E2 are the maximum neutron energy, cut off

energy between groups, and minimum neutron energy respectively.

For a fissioning system we define Eo as 10 MeV and E2 as 0. The

development of the value for E1 , the separation energy between the

fast and thermal groups, is based on two factors. The first is that

E1 needs to be high enough so up scatter out of the thermal group

can be ignored. For most systems this corresponds to a value

between 0.5 and 1.0 eV. The second is that E1 should be low enough

to ensure that the neutron cross sections in the thermal group are

well behaved (i.e., a 1/v behavior and no resonance peaks). In this

work we are primarily considering uranium systems moderated

9



with hydrogen or carbon compounds and possibly containing other

low Z elements such as fluorine, nitrogen, and oxygen. Noting the

behavior of these materials' cross sections (Figures 3 through 8)

we have selected the cut off energy between the two groups, El, as

1.0 eV. Note that the 'j2 3 5 and U238 cross sections are the specific

ones oriving the selection of the cutoff energy due to their

resonance characteristics.

57+57T---- 7r - - -- x
S.. 0., -- A

o. *

t SS O.05

10.C X8CO

Figure 3, Total cross section of U2 38. [From p. 4546, Reference 2].
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Figure 5, Total cross section of hydrogen. [From p. 1, Reference 2]
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Figure 6, Total cross section of carbon. [From p. 28, Reference 2].
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Figure 7, Total cross section of oxygen. [From p. 39, Reference 2].
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Figure 8, Total cross section of fluorine. [From p. 45, Reference 2]

With this energy cut off, the diffusion equation will simplify

since

i = dET(F5) = 1.0, (12)

1.2eV

01 dE (E)= 0. (3)

Je V ,

Using equations 12 and 13 and applying equation 9 to two energy

groups creates two simplified, coupled equations,

-VD 1 V I+XR1I( = (VI, fl, +V2
(

2
1

2)

k

-VlD 2V 2 +-a 2 2 = lsl-2(Al •  (14)

12



Assuming that both the fast and thermal groups in a bare, uniform

reactor have essentially the same spatial shape of P(r), where

*1 (r)= 'F(r) 01 and 02 (r)= T'(r) 02, we can show that

V gV() = 0, (15)

where 'P(rd)=O (rd is the extrapolated radius) and Bg 2 is the

geometric buckling. (Note that the subscript g in equation 15 does

not denote an energy group, but rather the dependence of the

buckling on system geometry.)

Then the relationships

01(r) = 4(r), 0(r) = 0Vr (16)

are substituted into Equation 14. Solving for k we find

Keff V If I + _sl-2V2lf2 (17)
,,RI+DIB 2  (,_R ,B2XY,2 22)"

~RlDlB +(IRl+DlB2 a+D2B)(7

To determine the individual factors of equation 17 in terms of

the two group constants, We will now draw an analogy between the

two group solution for Keff and the classical six-factor formula

(equation 18), which provides the descriptors we want to describe

thermalness. The classical six-factor formula is:

Keff = F'I7 .p-f-PNLfast"PNLthermaI. (18)

13



The first step is to identify the diffusion length for each group as:

= D2 (classical definition of (19)

1 =R1 (modified definition of Q) (20)

Using Equations 19 and 20, rearranging, and defining a fast

multiplication factor, K1 , and a thermal multiplication factor, K2 ,

equation 17 becomes:

Keff = KI+K 2  I(I+B2 + X1R=2V2a2 (21)

From basic one speed diffusion theory, the non-leakage

probabilities are:

PNLI = (I+LB2)- ', (22)

PNL2 = (I+IB2 " . (23)

Considering the K2 portion of equation 21 (the second term), we

notice that the number of fission neutrons produced per thermal

neutron absorbed is:

A2 f2 (24)
a2
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where 112 and f2 can be separated and identified as:

112 =v2Y_.,E (25)

f2 =a2 (26)

which is consistent with the classical definitions. The remaining

term in K2 is sl.-2/1R1 . This is just the number of neutrons

slowing down into the thermal group per those removed from the

fast group. This is identical to the definition of the resonance

escape probability and therefore,

P = L,-2 (27)
IRI

Combining Equations 22 through 27 we get the thermal

multiplication factor, K2 :

K2 =T 12 f2.p-PNLIPNL 2 . (28)

Now considering the fast multiplication factor, K1 and drawing

an analogy to group 2 parameters, we can define a fast group T11fl

as:

V 1  "fl1

1"hfl =  .R1 , (29)

15



where the number of fission neutrons produced per fast neutron

absorbed in fuel is:

Vh =I I R M (30)

11

and the fast utilization factor is:

fi = '~ (31)
TR1

Therefore, the K1 term becomes:

KI = T2-f2.PNL 1 . (32)

The only factor in the six-factor formula that has not been

identified is the fast fission factor, e. Knowing that:

Keff=Kl + K2 , (33)

and making use of the definition of Keff by the six-factor formula

(Equation 18), the fast fission factor can be expressed as:

F=_ +( I Ifl IXa2+D2B 2 ) (34)

With all of the factors of the six-factor formula defined in

terms of the two-group constants, where:

16



Kff = 712.f2.p.e.PNLrPNL 2 , (35)

we can now evaluate systems with the two-group diffusion theory

equation and define the new parameter for describing moderating

capability.1 ,2

1 This identification of the 2 group components of the six-factor

formula is expanded from the treatment by Duderstadt and
Hamilton, pp. 295-299, Reference 3.

2 The equations for 711, fl, ,12, and f2 are also derived for an

appliction using a Fermi age lethargy 2 group cross section collapse
analysis by Stanley, Reference 4.
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2.2 Selection of the Parameter to Describe Moderating

Capability.

In selecting the parameter to describe the moderating capability

of a system, we can immediately eliminate some of the eight

factors derived in the last section. The probabilities of

non-leakage do not provide any explicit information about

moderation so they can be eliminated. Similarly, Ti1 and fl, are fast

group factors, which do not describe interactions resulting in

moderation.

With the elimination of PNL 1 , PNL 2 , ,1, and f, this leaves 112, f2 ,

e, and p or some combination to be considered. To examine the

behavior of these parameters over a range of moderator to fuel

ratios, we modeled several critical U(4.89)0 2 F2 , H2 0 moderated and

reflected homogeneous spheres (problems BRENT1 through BRENT4,

Appendix 1). From this 12, f2 , e, and p were calculated and plotted

against critical mass and volume. The results are shown in Figures

9 through 12. All four of these factors produce curves with the

parabolic shape useful in predicting minimum critical mass and

volume. Therefore, all four of these factors are good candidates for

describing moderating capability.
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Figure 10, f2 vs. critical mass for U(4.89)0 2 F2 -H2 0, water reflected spheres of varying

/VX.
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Figure 11, p vs. critical mass for U(4.89)0 2 F2 -H2 0, water reflected spheres of varying
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Figure 12, c vs. critical mass for U(4.89)0 2 F2 -H2 0, water reflected spheres of varying

H/X.

The fast fission factor, e, though representative of how

"thermal" a system is, is not conducive for describing moderating

20



capabilities. It gives a ratio of the number of neutrons from all

fissions to the number of neutrons from thermal fissions, but does

not say anything about the mechanisms of how the neutrons causing

the thermal fissions were moderated. Additionally, the 2-group

correlation for r was derived by "backing in". In the relating of the

two-group diffusion theory results to the six-factor formula, E was

the only term that did not readily present itself and we

algebraically showed that, holding to the six-factor formula

correlation, equation 34 had to be true. Another problem with E is,

in equation 34, it depends upon the buckling. Buckling is a factor

derived from a one-speed diffusion theory approach for a bare,

homogeneous reactor. It loses significance and meaning in

multiregion or multigroup problems. Also, buckling is dependent on

geometry and we are looking for a parameter that is geometry

independent. (How we treat buckling in the modeling of critical

systems will be discussed in Section 3).

The resonance escape probability, p, is an excellent measure of

the slowing down characteristics of a system. It also treats the

ability of the system to avoid resonance absorption. By the

two-group relationship, equation 27, p considers all fast

absorptions. The only thing p does not treat is how much thermal

absorption there is in the system, but this is very important since

an optimally moderated system will scatter while limiting

undesirable absorptions. 112 and f2 are the measures of thermal

absorption. Combined together they represent the number of
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neutrons produced from fission per thermal neutron absorbed. This

is a relationship of desirable absorptions to undesirable

absorptions. Therefore, a combination of 112, f2 , and p should meet

all the requirements of a parameter to describe the moderating

capability of a system.

The most logical selection of the parameter would be a product

of all 3 factors (p*n2*f 2 ). This is in keeping with the form of the

moderation ratio (equation 2), where it is the scattering term

divided by the unwanted absorptive term. The product, p*2*f2 , by

the definitions derived earlier, is the down scatter and desirable

absorptions (vTf) divided by the unwanted absorptions (IR1 and

1 a2). This is analogous to the moderation ratio. However, when

p*712 *f2 is plotted against critical mass (see Figure 13) we get an

undesirable relationship. p varies inversly with 712f2 as functions

of fuel to moderator ratio. The product of the two then does not

result in a very unique relationship to moderator to fuel ratio or

critical mass and volume.

With the elimination of p*n2 *f2 and keeping 12 and f2 together

as one term, because of the computational convenience (alleviates

the cumbersome definition of "fuel") and their likeness of physical

meaning, a more suitable parameter is P/(T12 *f2 ). As seen in Figure

14, this parameter behaves as we would like and encompasses all of

the desired characteristics in describing moderation ability.
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Figure 13, T12 *f2 *p vs. critical mass for U(4.89)0 2 F2 -H2 0, water reflected spheres of

varying H/X.
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Figure 14, P/(1"2*f 2 ) vs. critical mass for U(4.89)0 2 F2 -H2 0, water reflected spheres of

varying H/X.
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With p/( 2 *f 2 ) selected as our parameter to describe

moderating capability, we must now evaluate a selection of critical

systems, calculate P/(ni2*f 2 ), and evaluate the applicability of our

parameter over a range of fuel-moderator mixtures and

enrichments.
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3. Modeling of Critical Systems In 2-Group Diffusion

Theory

The critical systems evaluated are low enriched U2 35 systems

with several different types of moderators. We chose low enriched

systems as the focus of this study because they are more sensitive

to moderator characteristics, specially the resonance escape

characteristics. Table 1 specifies the fuel-moderator mixtures

evaluated. Appendix 1, details each system modeled for which

P/(112*f2) was calculated. Wherever possible, actual data from

critical experiments was used and modeled. When actual data was

unavailable or inadequate for a desired fuel-moderator mixture,

critical systems were calculated using the geometric eigenvalue

search capabilities of the TWODANT code (References 5 and 6).

Table 1, Types of Critical Systems Evaluated

Fuel Moderator Enrichment (wt%) Range of H/X

U02 F2  H2 0 4.89 100-1099

U02 F2  H2 0 30.3 76-815

U3 0 8  STEROTEX 4.89 102-449

UF4  PARAFFIN 2.00 195-971

The first step in modeling the selected critical systems is to

evaluate them with the TWODANT transport theory code and the

Hansen-Roach 16-group cross section set (Reference 7). This is



done for two reasons. It verifies that the system is correctly

modeled, and it provides us with 16 group macroscopic cross

sections for the system. These 16 group cross sections are then

group-collapsed into two groups. Then using the two-group

diffusion theory relationships developed in Section 2.1, the

individual factors of the six-factor formula are calculated. Keff is

calculated using equation 35 and compared to the Keff from the

TWODANT 16-group cross section calculation to verify the

two-group model. Finally P/(1I 2 *f 2 ) is calculated. The group

collapsing and calculation of the six factors, Keff, and p/( 112*f2) is

done using a fortran program. (This program is presented in

Appendix 2).

The only things left to consider are the treatment of the

buckling term in the 2-group diffusion theory equations, which must

be treated differently for bare and reflected systems, and the

method of obtaining the two-group cross sections. The following

sections deal with these very important topics.

3.1 Bare Sytems.

In computing Keff using the two-group diffusion theory model

derived in Section 2.1, we need to determine the buckling, B2 , of the

systems. The first thing to consider is that buckling is an

eigenvalue of the one speed diffusion theory equations. In the

derivation of the two-group model, we asumed that both the fast
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and thermal fluxes had the same spatial shape or in other words the

same buckling. Though some work has been done in expanding the

meaning and use of buckling to two groups, we will continue to

assume that buckling for our two group analysis can be represented

by the one speed buckling of the systems.

For a bare system to be critical, the material buckling and

geometric buckling must be equal. Since we are evaluating critical

systems, we are able to use either the formula for material

buckling,

B2 .-
= - (36)L2

or the formulas for geometric buckling,

; parallelepiped

g= (2405 ; finite cylinder. (37)

(Zi)2 ; sphere

However, to use the material buckling we need a one group cross

section set. As will be shown in Section 3.3, we introduce errors

when developing a few group cross section set. The fewer the

groups the less representative of the continuous energy dependent

spectrum the cross sections become. Also, since we are group

collapsing the Hansen-Roach 16 group cross section set to obtain

our two group cross sections, there will be error associated with

the collapse method (see Section 3.3). To further collapse these
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cross sections into one group creates additional error so we simply

choose to use the the geometric relationships to calculate buckling.

To correctly use the geometric buckling relationships, we must

calculate the extrapolation distance, d. For most cases d can be

determined by

d = 0.71X , = 2.13D (38)

This involves determining a one group diffusion coefficient. This is

a trivial calculation and does not involve the collapsing and

combination of as many parameters as the material buckling does.

3.2. Reflected Systems.

Recall that the six-factor formula and buckling are based on a

bare, homogeneous reactor. In a reflected system we can no longer

assume that the fast and thermal fluxes have the same spatial

shape. To model reflected systems using the two-group diffusion

theory analogy to the six-factor formula we make use of the

concept of reflector savings. Reflector savings is the reduction in

geometric dimensions of a critical system due to the addition of a

reflector. For a critical sytem geometric buckling (equation 37) and

material buckling (equation 36) must be equal. The addition of a

reflector does not change the material buckling, therefore, the

buckling of a reflected system is equal to the geometric buckling of
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an equivalent bare system. Making use of this relationship, buckling

is determined for reflected systems in one of two ways.

The first method, and most preferred, is the use of an

experimentally determined reflector savings. For many critical

experiments the same fuel-moderator mixture was used in both a

bare and reflected configuration. When equivalent bare dimensions

are available, buckling for the reflected system is calculated by

using the bare diminsions in equation 37. This is anologous to

applying the reflector savings to a reflected system and treating it

as an equivalent bare system.

When experimentally determined reflector savings are not

available, we make use of a relationship derived from a coupled set

of one group diffusion theory equations. The two equations are the

one group diffusion equations for a spherical core and reflector.

Solving these two equations, subject to boundry conditions, we find

that:

BRcotBR - I DT _&--/ + 1 (9

The subscripts r and c refer to the reflector and core respectively.

Given the radius, R, of the core, the buckling can be determined by

an iterative approach [pp.214-217, Reference 8]. As in the buckling

equations for a bare reactor we need the one group constants, Dr,

Dc, and Lr. These are determined by group collapsing the

Hansen-Roach 16-group cross section set as will be explained in the
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next section. Again we expect some error from the collapsing

process. This relationship has one other limitation. It is only valid

if ET<LT 2 . Therefore, this relationship will not hold for reactors

moderated and reflected by hydrogenous material where T>>LT2 .

To handle hydrogenous moderated and reflected reactors we

calculate the reflector savings, 8, using the emperical formula

developed by R. W. Deutsch [p. 222, Reference 8],

8 = 7.2 + 0.10(Mj - 40.0), (40)

to calculate the reflector savings. 8 is added to the reflected

system dimensions, converting it into an equivalent bare system,

and buckling is determined as described in Section 3.1.

3.3. Group Collapsing of the Hansen-Roach 16-Group Cross

Section Set.

The method described so far is dependent on identifying and

using accurate 2-group neutron cross sections. There are a few

2-group cross section sets available. However, these are neither

complete nor suitable for our purpose. One such 2-group cross

section set is a neutron age collapse done by M. J. Stanely in 1958

(Reference 4). This set of cross sections is presented in

macroscopic form based upon nominal densities. Not knowing for

sure what he used as nominal densities, we are hesistant to use his
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values. It seems that with the introduction of multi-group

computer codes using a variety of many group structured cross

section sets, 2-group cross section sets have either not been

developed or updated. Therefore, we have to develop a method for

and determine the 2-group cross sections for use in this study.

This section explains the group collapse method we use in

deriving 2-group neutron cross sections. We group collapse the

Hansen-Roach 16-group cross section set into 2-groups by a flux

weighting technique. There are questions concerning the accuracy

of collapsing many group cross sections into fewer groups since we

are becoming less and less descriptive of the continous cross

section spectrum. Therefore, a great deal of effort has gone into

attempting to quantify the A'LCnt of inaccuracy, where this

inaccurracy occurs, and to justify the use of the collapsed cross

sections in our 2-group analysis.

3.3.1. Definitions.

The following is a list of symbols and definitions introduced in

this section.

Fine group = the many group structure prior to collapsing into

broad groups. Denoted as g. See Figure 15.

Broad group = the few groups comprising of one or many fine
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groups after collapse. Denoted as G. See Figure 15.

si-i+n - scattering from group i to group i+n.

ICOL - A TWODANT defined input term for the edit energy-broad

-group collapsing option. It is the number of fine groups

in each broad group (example; ICOL-1 3,3 is 2 broad groups

with 13 fine groups in the first, 3 in the second).

fine group g

broad
group fine group g+l

G
fine group g+2

g+3
broad
group g+4
G+1

g+5

Figure 15, Example of fine and broad group structure.

3.3.2. Theory.

A. General.

The main principle in group collapsing is conservation of

neutrons and neutron reactions. If these are conserved, there should

be no difference in the ensuing calculation results.
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The most common method of discretizing group constants is by

performing two multigroup calculations. The first neglects any

spatial or time dependence, and a finely structured multigroup

calculation is done to determine the intragroup fluxes. This is done

using appropriate models of neutron slowing down and

thermalization. The group constants used in this first calculation

are taken from tabulated continuous or many group cross section

sets. The fluxes from the first calculation are then used to

determine the broader group constants.

An example of this is taking the ENDF/B cross section data set

and estimating the cross sections at a finite number of energy

levels. The first approximation is normally just the average of the

tabulated data over the energy range of each of the fine groups.

This finite number of energy levels is larger than the number of

groups to be used in the calculations. These are used to determine

the "intragroup" fluxes that will be used in the final group collapse

down to the desired number of broad groups for use in the

calculations.

In a reactor or system, fluxes and cross sections are dependent

on the composition and geometry of the system. Therefore, since

group collapsing is based upon intragroup fluxes and the zone

composition, the collapse method must take into account the space

dependence of the flux and materials.
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B. Methods of Group Collapsing.

The main method for collapsing cross sections into broader

groups is by flux weighting. What this actually does is conserve the

reaction rates of the finer groups within the broad group. The flux

multiplied by the macroscopic cross section is the reaction rate.

Summing the fine group reaction rates for a given broad group is the

reaction rate for the broad group. Then dividing this by the total

broad group flux (sum of the fine group fluxes within the broad

group) gives the broad group macroscopic cross section. Equations

41 through 44 represent this for vYf, the absorption and total cross

sections, and the diffusion coefficient.

X V fi

n = (41)

i=g

+Yoi x l-,i

naG + (42)

i=g

oi x Iti

= (43)

Si
i=g
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g+nYijx Di
DG- =ffig (44)

g+n

i=g

where the summation from i=g to g+n is over the fine groups

contained within the broad group G.

Unfortunately, the process is not that straight forward for the

scattering cross sections. Looking at Figure 16, we see that for

each of the fine groups there are six scattering cross sections,

Ysg-g to -sg-g+5 (Hansen-Roach 16-group cross section set

structure). However, when collapsed into broad groups the self

scatter and down scatter cross sections change based on the number

of fine groups in each broad group.

For the case shown in Figure 16 the scattering cross sections for

fine group 1, Is1-1, X-s1-2, and .sl_3, become self scattering cross

sections for broad group 1. Similarly, the cross sections Is 2 . 2 ,

Is2-3 , and Is3-3 are also self scatterers for broad group 1. Then,

corresponding with the treatment of the vTf, la, and It collapsing,

the broad group 1 self scatter cross section is

- = (Y.j+s,.2+ EsI.3*+(X-s2.2+7-s2.3)0 2+ s 3.303 (45)

01+02+03
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Figure 16, Relationship of the fine group 1 scattering cross

sections and the broad group structure.

Broad group down scattering is similiarly evaluated. From the

fine groups within a broad group, all the fine group scattering cross

sections that result in a neutron energy within the bounds of

specific lower broad group are componets of this broad group down

scatter cross section.
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Figure 17, All fine group scattering cross sections that

contribute to the broad group down scatter 7-s1-2.

Figure 17 shows an example of all the fine group scattering cross

sections in a broad group that are part of the scattering from this

broad group down in to the next broad group. An evaluation of this

nature must be done for each and every broad group and all possible

combinations of broad group down scattering included.
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C. Space Dependence.

Cross sections as defined and determined are a physical

characteristic of a material or isotope. For a constant material in

space (ie., a homogeneous mixture) there should be no variance in

the cross sections for this material over space. Only for a change

in material composition or density should a macroscopic cross

section change with position. However, since cross sections are

continuously energy dependent and we approximate this by

multigroup techniques, we see some space dependence develop

during the collapsing process. Note that we collapse by flux

weighting; flux is space dependent. The ratios of the energy group

fluxes also vary with position and, therefore, when collapsing cross

sections this space dependence will become a factor.

The treatment of the space dependence falls into two categories:

variations in material compositions and flux by position.

(1) Material Composition.

The treatment of the space dependence of material

composition is fairly straight forward. For each zone of a specific

material composition, a separate collapse is done to determine that

zone's few group cross sections. As illustrated in Figure 18, a

separate collapse needs to be done for the homogeneous core, the

container, and the reflector to account for the space dependence of

the material.
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Figure 18, Mixture/composition variation with position.

(2) Flux.

The treatment of the space dependence of the flux when

collapsing is slightly more complicated. We see in Figure 19, how

the fluxes vary with position. Based on the use of flux weighting

for group collapsing, it is obvious that our collapsed cross sections

also vary with position. Discretizing space into mesh cells is an

acceptable technique which reduces the number of collapsed cross

sections. This reduces the continuous dependence into area or zone

dependence. Of course the more zones or meshes used, the more

accurate the outcome. (This will be further discussed in Section

3.3.4.A).
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Figure 19, 16-group flux profile for a U(4.89)0 2F2 -H20, water

reflected sphere with H/X=1 099.

However, cross sections are physical characteristics and should

not vary with position unless a material composition variance is

encountered. The position variance of cross sections due to

position variance of the flux is a result of the collapsing process.

If a continuously varying cross section set is needed, we have done

nothing to simplify our approach. It is unreasonable to have

continuously varying solutions to our two-group diffusion theory

calculations. Therefore, a further approximation is needed to

account for this space dependence and obtain one set of cross

sections for a given composition.

We can make an assumption that group collapsing with the
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average flux will provide the average cross sections. To determine

the average flux, we further assume that one group diffusion theory

is adequate to describe the flux profile of all the fine groups. For a

sphere the one group diffusion solution for the flux is,

where R is the extrapolated radius for a bare sphere.

The average flux is determined by using the relationship,

j (r)dV
dV ' (47)

where dV=47tr 2 dr. Substituting equation 46 into equation 47,

integrating and reducing we get:

= _3 (48)tR"

Equations 46 and 48 are combined to determine that the point where

the average flux is found is,

r4 = 0.6505R (49)

This approximation uses the fine group fluxes at the point

determined by equation 49, as a representative value of the entire
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system, to perform the group collapse.

The basic theory behind group collapsing is the conservation of

reaction rates, *T [reactions/cm3 -sec]. However, the total number

of reactions is volume dependent, $*_,*V [reactions/sec]. If we just

use the average fluxes to collapse, we are assuming that the total

reactions which occur are characteristic of the reaction rates at

this point in space. This is not the case. The further from the

center of a system the more volume a specific flux is related to.

Figure 20, Differential volume of a sphere.

Referencing Figure 20, we note that the larger r, the more volume

there is within the interval dr. Therefore, this volume effect on

reaction rates can be used to further limit our collapse procedure.

This is done by volume weighting the fluxes to obtain one

representative flux for each group over the zone. This is the same

as volume weighting the reaction rates by adding the volume terms
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to the numerators and denominators of equations 41-44 and all

applicable scattering collapse equations. For example taking the

absorption collapse relationship (equation 42) and volume weighting

the reaction rates we get:

Yoi X YaidV

j=g

_G = J x(50)

However, only the flux and incremental volume are dependent upon

position, so these can be separated from the fine group cross

sections and we can separately volume weight the fluxes for each

fine group. The volume weighted or average flux for each fine group

is then,

_ 1(r)dV

(51)

JdV

Discretizing this integral in space as deterministic codes do, we

seperate our space into a finite number of cells. Using a one

dimensional example, a sphere, when we descretize the space we

have a set of concentric shells (Figure 21).
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Figure 21, 1/4 cut away of a sphere, radius R, descretized

into 4 mesh cells of equal width x.

For each mesh cell we have a flux, ¢m, an internal radius rm, and a

mesh cell width of x (normally constant over a zone of the system).

Rewriting equation 51 in terms of our discretizing technique we

have,

M

= m (52)M

m=1

where M= the number of mesh cells used.

Using the example presented in Figure 21, we see that each mesh

cell volume is determined by,

Vm = [(r+x)3 - r3], (53)
3
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and the denominator of equation 52 is just the total volume of the

sphere (4 / 3 n R 3 ). This whole process is nothing more than

multiplying the fluxes by the volume over which they interact,

summing these, and dividing by the total volume. This is easily

generalized into other geometries. However, for two dimensional

problems, both radial and axial directions need to be considered.

D. Angular Dependence/Anisotropic Effects.

Finite system fluxes and Keff are heavily dependent upon the

anisotropic scattering contributions and the angular flux or current.

Looking at the steady state transport equation,

V.f 4(r,E, ) + X~t(r,E)4)(r,E, )

= fd fd 'T~s(r,E'-E, -)4(r,E, )
f dE If(54)

+ -L dE' df'X(r,E'-E)vY(r,E')O(r,E)

+ Q(r,E,!Q),

we immediately notice that the angular dependence is on the right

hand side of the equation. The left hand side, leakage and removal

terms, is not angular dependent. If a neutron leaks from the

incremental volume or interacts in any method [Ito(r,E,12)],

regardless of neutron incident or final direction, it is a loss in

terms of the balance equation. On the right hand side of the

equation, the fission source term is assumed to be isotropic. The
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fission neutrons have basically forgotton the direction of the

incident neutron and are ,therefore, independent of this direction.

We will neglect the flux independent source term, Q(r,E,f"), since it

is not a factor in this investigation.

This leaves the inscatter source term,

f If (55JdE df'22s(r,E'.-E,2'-)(r,E, )), (55)

which can be highly angular dependent. The angular dependence is

commonly treated by use of a spherical harmonics expansion and/or

discrete ordinates methods. In the spherical harmonics expansion

technique the scattering transfer propability, _s(r,E'-E,Q'-Q), is

represented by a Legendre polynominal expansion:

L
L~,'- ,' )= I (2:139n(r,E'....E)Pnq(jO) , (56)

n=O

where go = O'°f. The sn(r,E'-E) term is the anisotropic scattering

cross section. The spherical harmonics theorem is used to expand

Pn(1O) to further treat the angular dependence and the in-scatter

term becomes:
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j n=O' . .O ) 2 dO' (If)ok(O-('))(r.E'4 . (.

Notice that even though the scattering cross sections angular

dependence is now in terms of an energy only dependent anisotropic

scattering cross section, the angular dependence is still present in

the expansion of Pn(9 0 ).

The discrete ordinates method also involves the Legendre

polynominal expansion of the scattering transfer probability. The

angular dependence, however, is treated by characterizing the

angular-direction domain as a finite number of quadrature points

each with an associated quadrature weight. Now we have the

inscatter term as

dE'X Y Xsn(rE'--->E oW)'!n (Qd'))(r,d',E' Yn(-Qd) (58)
n=0 m=-n Ld'=l

where d=1,2,. . .,D, the quadrature directions, (Od is the quadrature

weight, Ymn is the spherical harmonic relationship, and Ymn is the

complex conjugate of Ymn. Again the angular dependence is found in

the expression operating on the anisotropic scattering cross

section.
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Our Hansen-Roach cross section sets have anisotropic scattering

cross sections associated with hydrogen and deuterium (the two

moderators with a significant anisotropic component). These can be

group collapsed as discussed earlier. The concern is with the

treatment of the angular dependence as found in the spherical

harmonics and descrete ordinates approaches (i.e., the functions

operating on Ysn(r,E'-E) in equations 57 and 58). To reproduce the

exact results of a calculation with a group collapsed set of cross

sections, the angular dependence of the scattering must be

preserved. This cannot be done using scalar fluxes. Since the

angular-directional fluxes of each fine group determine the

scattering process. But it is not feasible to collapse at each point,

for each angular flux direction as the resultant cross section set

would be to complicated for practical use in our simplified

two-group analysis.

3.3.3. General Method of Analysis/Procedure.

A. Basic Procedure.

The tools used in evaluating errors associated with group

collapsing are the deterministic transport theory code, TWODANT,

with the Hansen-Roach (H-R) 16-group cross section set, BXSLIB,

and a simple fortran program, COLLAPSE, which group collapes

cross sections by flux weighting as outlined in the theory section.

(This program is detailed in Appendix 3).
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The basic procedure followed in this investigation begins with

modeling a system using TWODANT/H-R. TWODANT's output

contains the macroscopic cross sections and flux profile for each of

the sixteen groups (References 5 and 6). Corresponding with the

earlier discussion on the basic theory of collapsing, the Hansen-

Roach cross sections are the 16 fine groups. The TWODANT derived

16-group fluxes are the intragroup fluxes. Once the system is

accurately modeled in TWODANT, the macroscopic cross sections

and flux profiles are used as input to COLLAPSE to determine the

group collapsed cross sections for a desired set of broad groups.

Volume weighting of the flux to determine a volume average flux is

done using a simple fortran program, FLUX (Appendix 4), which

applies the theory discussed in Section 3.3.C.(2). If volume

weighted fluxes are desired for the group collapse, the output from

FLUX is used as the input fluxes for COLLAPSE. Then the group

collapsed cross sections are entered into TWODANT (Reference 5),

and holding everything else constant, the resultant multiplication

factor is compared to the one derived using the H-R cross section

set.

B. Evaluation of Sources of Errors.

We approached the evaluation of the errors associated with the

group collapsing of cross sections in 3 steps. These were the

evaluation of the fluxes used for the collapse, collapsing with

different ICOLs in different cross section regions (thermal,

epithermal, resonance, and fast), and the evaluation of the
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anisotropic/Pi effect.

(1) Fluxes.

The first question is how significant is the choice of the fluxes

used for the group collapse. Is there a significant difference in

using the volume weighted fluxes versus the centerline or "average"

fluxes in deriving one collapsed cross section set for a zone? To

answer this group collapses were done using centerline, average,

and volume weighted average fluxes for the same system and ICOL.

Additionally, these were compared to point by point collapses,

where a collapse was done at each TWODANT mesh point and then

modeled in TWODANT as separate zones with a separate set of group

collapsed cross sections for each zone.

(2) Varying ICOLs.

To determine if there is a specific energy range in the cross

section spectrum that produces the majority of the error when

group collapsing is done, we group collapsed over a wide range of

ICOLs. The H-R 16-group cross section set is broken down as shown

in Table 2.
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Table 2, Hansen and Roach 16-Group Cross Section Specifications
[extracted from p.12, Reference 7].

v, Fission

Group Energy Range Ui  cm/shake Spectrum

1 3 -oo Mev 28.5 0.204

2 1.4 - 3 Mev 0.762 19.9 0.344

3 0.9 - 1.4 Mev 0.442 14.7 0.168

4 0.4 - 0.9 Mev 0.811 11.0 0.180

5 0.1 - 0.4 Mev 1.386 6.7 0.090

6 17 - 100 Kev 1.772 2.70 0.014

7 3 - 17 Kev 1.735 1.14 0

8 0.55 - 3 Kev 1.696 0.480 0

9 100 - 550 ev 1.705 0.206 0

10 30 - 100 ev 1.204 0.101 0

11 10 - 30 ev 1.099 0.0566 0

12 3 - 10 ev 1.204 0.0319 0

13 1 - 3 ev 1.099 0.0179 0

14 0.4- 1 ev 0.916 0.0109 0

15 0.1 - 0.4 ev 1.386 0.00606 0

16 Thermal (0.025) 0.00218 0

[where Ui is the Lethargy width of group i]

Since the emphasis of the study is on uranium systems with

significant resonance absorption, we used the energy dependent

total cross sections for U2 3 5 and U2 3 8 as a reference (see Figures

3 and 4), and we grouped the H-R cross section energy groups into
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four broad energy groups. The fast region, governed by the fission

spectrum, is groups 1 through 6. The resonance region is the energy

range below the fast region and ending in the last resonance of the

uranium isotopes, groups 7 through 12. The thermal region, based

on our two-group diffusion theory objective, is groups 14 through

16. This leaves group 13 unclassified. We wiii designate it as the

lone epithermal group.

Using these definitions, collapses were done starting with the

combination of just two of the H-R groups within a defined region,

then three, until the entire region was collapsed into one broad

group. This was done leaving all the other H-R groups as is to

isolate the effect of the collapse to the specific region of interest.

Other combinations, collapses across region boundries and selected

ICOLs, were also conducted to evaluate the effect these had on the

accuracy of the multiplication factor, K. These were all done using

the volume weighted average fluxes; the more accurate method of

developing one cross section set per zone (this will be detailed in

the results of the analysis).

(3) Anisotropic/P1 Effect.

The first angular dependent check was to run K, calculations. In

an infinite system the fine group fluxes are constant and the

scattering is truly isotropic. Therefore, K.0 calculations and

collapses are completely independent of angle or direction. The
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other check was to run Keff calculations with the Legendre

expansion order equal to 0. However, TWODANT still assigns

quadrature directions and weights for this case so angular

dependence is still present.

C. Important Points When Group Collapsing Using TWODANT/H-R

for the Fine Group Structure.

(1) The anisotropic component of the H-R cross section set

must also be group collapsed and included in the input of the group

collapsed cross sections, unless the Legendre expansion order is 0.

(2) TWODANT determines the effective absorption cross

section by subtracting the scattering cross sections from the total

cross section. The total cross section and scattering cross

sections are normally on the order of 10" 1 or 1. The absorption

cross sections are normally on the order of 10- 3 or 10- 2. If not

enough significant digits are included in the input cross sections,

when TWODANT computes the absorption cross section, the

absorption cross section used in the calculation can be significantly

different from the one derived by the group collapse method.

SIGNIFICANT DIGITS ARE SIGNIFICANT.

(3) In determining the group collapsed diffusion coefficients,

you must first determine the fine group diffusion coefficients and

then group collapse these. Using the group collapsed cross sections

to determine a broad group diffusion coefficient does not result in
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the correct value. The equation for determinig the fine group

diffusion coefficients, consistent with the TWODANT code, is:

Dg = 1 (59)

3.3.4. Results/Analysis.

A. Fluxes Used for the Group Collapse.

The first thing considered is how does the choice of fluxes

used in the group collapse impact the results. Group collapses of

ICOL=13,3 (ICOL used in two-group diffusion theory analysis) were

done on two U(4.89)0 2 F 2 -H 2 0, bare and reflected systems, a

U(93)-C system, and a U(93) metal system. For each system,

collapses were done using the center point flux, average flux as

determined by equation 48, and the volume weighted average flux

(VA flux). The resulting two group cross sections were provided as

input to TWODANT and, with everything else constant, Keff was

calculated.

To further evaluate flux dependence on the collapse procedure,

the systems were modeled in TWODANT with as few mesh points as

possible, and a collapse was done at each mesh point with that

point's fine group fluxes (space/energy collapse). Then Keff was

calculated with these input into TWODANT as separate zones, each
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with a unique set of cross sections. This should eliminate any

approximations made in selecting one flux that is representative of

the entire material zone. The results of these calculations are

shown in Table 3.

Table 3, Comparison of Keff from group collapses using different

fluxes.

group collapsed with ICOL=13,3
H-R 16 group by the following fluxes:

Problema cross sections centerline average volume weighted spacelenegv

BRENT1 1.03878 1.06699 b 1.06608 1.0630 c

BRENT2 1.01521 1.07729 b 1.07540 1.07491d

BRENT1 0 0.984257 1.03699 1.03562 1.03201 1.03365e

BRENT11 0.992137 1.04059 1.04005 1.03717 1.03820 f

BRENT50 0.999964 1.05551 1.03276 1.04900 1.049229

BRENT60 1.0002 1.01018 1.00905 1.00830 1.007559

a. All problems ran with the Legendre polynominal order of scattering as 1.
b. Reflected systems. Equation 8 is invalid.
c. 25 mesh points; 12 in core, 1 in Al container, 12 in reflector.
d. 20 mesh points, 10 in core, 1 in Al container, 9 in reflector. For value shown, 2 mesh

points per collapsed mesh point were used (see explanation in write up).
e. 13 mesh points, 12 in the core, 1 in the Al container.
f. 11 mesh points,10 in the core, 1 in the Al container.
g. 10 mesh points.

What is obvious here is that in most cases the space/energy

collapse doesn't provide the closest approximation to the H-R 16

group solution. The volume weighted average flux is the most

accurate. One thing to note is that in doing the space/energy

collapses, we have induced some error by reducing the number of

mesh points used by TWODANT to reduce the number of calculations.
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Looking at problem BRENT2 as an example, the problem was run with

10 mesh points in the fuel bearing region, 1 in the Al container, 8 in

the first 17 cm of the reflector, and 4 in the remaining 90 cm of

reflector. The breakdown in the reflector was neccessary to

adequately model the drastically varying flux profiles in the

"thermal hump" region of the reflector. Also, the collapses in the

outer region of the reflector became meaningless due to fluxes on

the magnitude of 10-40, with the group 16 flux still on a magnitude

of 10-16. The collapse fell apart and reduced to values of zeroes

because of the computers inability to handle these small numbers.

It was determined that neglecting the last 30 cm of the reflector

didn't alter the results of Keff when using the space/energy

collapsed cross sections.

What does alter the value of Keff is the number of fine mesh

points used in the calculation. The BRENT2 Keff, using the H-R 16-

group cross sections, shown in Table 3 was calculated using 117

mesh points, 40 in the core, 2 in the Al container, and 75 in the

water reflector. Keff was calculated as 1.01528 using the mesh

point break down described in the preceding paragraph and th3 H-R

16-group cross sections. Though an extremely small difference in

K eff ,  there is a variation in the flux profiles of the two

calculations (Figure 22 and 23). From Figures 22 and 23 we see

that the largest difference in the flux profiles is in the 1 6 th group

near the material/reflector boundry. This variation in flux is the

reason we see that space/energy collapsed cross sections, often
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produce Keffs with more error than the volume averaged flux

method. Also, when the space/energy collapsed cross sections were

entered into TWODANT as separate zones, using only one mesh point

per zone, Keff was 1.07553 compared to a Keff of 1.07491 using

two mesh points per zone. Table 4 provides Keff values for

additional cases with various numbers of mesh points and energy

groups.

Legend

• , tl ±..

0 in,..

S\ Jj I0,,42O.G ... _

C S IC IS RADI0 25 30 35AmAS

Figure 2:2, BRENT2, U(4.89%)O2F2-H20, water reflected sphere,
H/X=524, TWODANT derived flux profile with XINTS=40,2,75.
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Legend
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Figure 23, BRENT2, U(4.89%)0 2F2 -H20, water reflected sphere,

H-/X=524, TWODANT derived flux profile with XINTS=1 0,1,8,4.
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Table 4, Comparison of results for different numbers of mesh
points used in TWODANT Keff calculations.

Number of Mesh Size TWODANT
Problem energy rouga XINTSb rznem b  detrmirdKff
BRENT1 16 34,2,75 1.02,0.08,1.36 1.03878

16 12,1,12 2.89,0.16,8.53 1.03727

2 12,1,12 2.89,0.16,8.53 1.06303

2 24,2,24 1.44,0.08,4.26 1.06704

BRENT2 16 40,2,75 0.58,0.08,1.52 1.06704

16 10,1,8,4c  2.3,0.16,2.11,24.3 1.01 528d

2 10,1,8,4 2.3,0.16,2.11,24.3 1.07553

2 20,2,16,8 1.15,0.16,1.05,12.1 1.07491

BRENTI 0 16 75,5 0.339,0.03 0.984257

16 12,1 2.12,0.16 0.983033

2 12,1 2.12,0.16 1.04922

BRENT11 16 40,2 0.71,0.08 0.992137

16 10,1 2.82,0.16 0.991940

2 10,1 2.82,0.16 1.03820

2 20,2 1.41,0.16 1.03826

2 30,3 0.94,0.05 1.03827

BRENT50 16 60 1.09 0.999964

16 10 6.56 0.995230

2 10 6.56 1.04922

2 20 3.28 1.04946

BRENT60 16 10 0.87 1.00018

2 10 0.87 1.00755

a. All two group calculations presented used the space/energy collapsed cross sections
from the smallest number of 16 group XINTS listed for the problems.

b. XINTS is the TWODANT code for the number of mesh cells per zone. They are presented
here in the order: core/fuel bearing region,container, reflector.

c. This break down of XINTS has two separate zones in the reflector.
d. This would not fully converge. The discrepancy was in the last mesh cell in the reflector.
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The results shown in Table 4 confirm that the number of mesh

points used in tl-, collapse calculation, and in the modeling of the

systems, have an impact on the accuracy of the Keff. The deviation

seems to follow no set pattern and is system dependent. To

accurately model and collapse using the space/energy method we

must use an appropriate number of mesh points, which is usually

large. This involves a large number of calculations and produces a

large number of cross sections needed to describe one system. This

is inappropriate for our needs.

For our simple two group diffusion theory approach, we only

want one set of cross sections for a given material. With this in

mind, the results presented in this section show the volume

weighted average flux provides the best results.

The concern with these results is the apparent magnitude of the

error when group collapsing with any of the methods presented

above. What we will do now is try to isolate what region of the

energy spectrum the majority of this error comes from and why.

B. Group collapses of varying ICOLs.

Using the volume weighted average fluxes for collapsing, two

systems were group collapsed into the combinations of energy

groups and ICOLs presented in Tables 5 and 6. As done in evaluating

the choice of fluxes, the collapsed cross sections were provided as

input into TWODANT and Keff calculated.
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Table 5, Results from collapsing the H-R 16-group cross section set
for a U(4.89%)0 2F2-H20, water reflected sphere with H/X=1 099.

#of grouos cross sections/ICOL Keff MAI K. 10/6AI remarks
16 H-R16 group set 1.03878 0.00 1.19684 0.00

16 16 groups/manual input 1.03892 0.01 1.19701 0.01

15is,,,.. 1.03915 0.04 1.19879 0.16

14 3,1,1,1,....1 1.04071 0.19 1.19639 0.04
fast group collapse

13 4,1,1.1,....1 1.04337 0.44 1.19919 0.19 [fission spectrum;
groups 1 -6]

12 5,1,1.1,....1 1.04736 0.85 1.19626 0.05

11 6,1,1,1,...l 1.05145 1.22 1.19901 0.18

15 1,1,1....1,2 1.04219 0.33 1.19593 0.08
thermal/epithermal

14 1,1,1....1,3 1.04137 0.25 1.19673 0.01 collapselgroups
13-16]

13 1.1.1 ....1,4 1.04187 0.30 1.19540 0.12

15 111111111121, 1, 1,1 1.03895 0.02 1.19703 0.02

14 111111111311111.03901 0.02 1.19702 0.02
resonance region

13 11111111411111.03907 0.03 1.19701 0.01 collapse [groups
7-12]

12 1111111511111.03919 0.04 1.19710 0.02

11 111111611111.03928 0.05 1.19715 0.03

10 1111,711111.03896 0.02 1.19640 0.04

9 1111811111.04083 0.20 1.19697 0.01
resonance region

8 1,1,1,9,1,1,1,1 1.04331 0.44 1.19682 .002 collapse expanded
into fast region

7 1,1,10,1,1,1,1 1.04576 0.67 1.19671 0.01

6 1,111111.05615 1.67 1.19685 0.00

5 12,1,1,1,1 1.06196 2.23 1.19651 0.03

10 11111171111.03909 0.03 1.19668 0.01 resonance/epithermal

8 1,1,1,1,1,1,7,3 1.04162 0.27 1.19608 0.06
selected few group

4 5,6,2,3 1.05069 1.15 1.19673 0.01 collapses

2 13,3 1.06608 2.63 1.19593 0.08
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Table 6, Results from collapsing the H-R 16-group cross section set
for a U(4.89%)0 2F2-H2 0, water reflected sphere with H/X=524.

#of groups cross sections/ICOL Keff IAI KI II. /A remarks
16 H-R 16 group set 1.01521 0.00 1.38523 0.00

16 16 groups/manual input 1.01535 0.01 1.38542 0.01
-----------------..-....--------...--------------..-.---

15 2,1,1,1 .... 1 1.01555 0.03 1.38539 0.01

14 3,1,1,1 .... 1 1.01831 0.31 1.38545 0.02
fast group collapse

13 4,1,1,1 .... 1 1.02255 0.72 1.38531 0.01 [fission spectrum;
groups 1-6]

12 5,1,1,1 .... 1 1.02922 1.38 1.38532 0.01

11 6,1,1,1 .... 1 1.03734 2.18 1.38545 0.02

15 1,1,1 .... 1,2 1.01918 0.39 1.38497 0.02
thermal/epithermal

14 1,1,1 .... 1,3 1.02286 0.75 1.38618 0.07 collapse[groups
13-16]

13 1,1,1 .... 1,4 1.02514 0.98 1.38487 0.03
........................................................

15 1,1,1,1,1,1,1,1,1,1,1,1,1 1.01534 0.01 1.38534 0.01

14 1,1,1,1,1,1,1,1,1,3,1,1,1,1 1.01554 0.03 1.38532 0.01
resonance region

13 1,1,1,1,1,1,1,1,4,1,1,1,1 1.01549 0.03 1.38482 0.03 collapse [groups
7-12]

12 1,1,1,1,1,1, 1,1,1,1 1.01574 0.05 1.38490 0.02

11 1,1,1,1,1,1,6,1,1,1,1 1.01594 0.07 1.38483 0.03

10 1,1,1,1,1,7,1,1,1,1 1.01670 0.15 1.38447 0.05

9 1,1,1,1,8,1,1,1,1 1.02055 0.53 1.38441 0.06
resonance region

8 1,1,1,9,1,1,1,1 1.02653 1.12 1.38434 0.06 collapse expanded
into fast region

7 1,1,10,1,1,1,1 1.03184 1.63 1.38433 0.06

6 1,11,1,1,1,1 1.05272 3.69 1.38468 0.04

5 12,1,1,1,1 1.06329 4.74 1.38463 0.04

10 1,1,1,1,1,1,7,1,1,1 1.01596 0.07 1.38382 0.10 resonance/epithermal

8 1,1,1,1,1,1,7,3 1.02350 0.82 1.38429 0.07 selected few group
collapses

2 13,3 1.07540 5.93 1.38433 0.06
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What these two tables confirm is that the majority of the error

associated with group collapsing comes from the fast region. At
higher neutron energies, the significant interaction is scattering.

The higher the neutron energy the more anisotropic or forward

preferential the scatting becomes (laboratory system).

To analyze the range of neutron energies where anisotropic

scattering is predominate, we will start with Schrodinger's

Equation,

V 2 (r,0,0) + 2--E(r,0,0) = 0, (60)h,2

where h - the reduced Plank's constant,
g a the reduced mass of the system = MmM+M

E - the center of mass energy of the particles,

to describe the scattering interactions of the neutrons. Using

separation of variables and Legendre polynomials, the solution to

equation 60, in spherical coordinates is

1 a R _2ir E- h2l1+1) =0, (61)
r2 ar ar] h2 ' 2r

where R is a function of r,
1 is the order of Legendre expansion.

Letting

E'= E l(l+1)h 2  
(62)

2gr2
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we see that E' must be greater than or equal to zero to define a real,

physical neutron-nucleus interaction. Therefore, we can set E' = 0

to determine the acceptable values for I. Recalling that I 0

corresponds to isotropic scattering and I = 1 to linear anisotropic

scattering, we set I = 1 to determine the energy of neutrons at

which scattering shifts from isotropic to linear anisotropic. This

relationship is:

E= h2  (63)
pgr 2

We can replace r2 by the classical radius of the nucleus, Rs, which

can be calculated by

Rs = 0.15x1O"12A1/3 cm. (64)

Then the energy in the center of mass system below which a neutron

will experience isotropic scattering is:

E = _ h2 (65)
pO.15x10-12)2 A2/3

Roughly we can apply the opposite of this in the laboratory

system, the frame of reference in which we are dealing. Therefore,

neutrons below the energy given by equation 65 will predominately

experience linear anisotropic scattering in the laboratory system.

For example, equation 65 gives energies on the order of magnitude

of 100 Mev, 6 Mev, and 0.6 Mev for hydrogen, carbon, and uranium
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respectively. Therefore, neutrons in the energy range of our

interest (0 - 10 MeV) are predominately scattered anisotropically.

What this means is that the anisotropic behavior not only

depends on neutron energy but on the atomic number of the

scatterer as well. The lighter the scatterer and the higher the

neutron energy the more anisotropic the scattering interaction

(laboratory system).

This is the reason we see the large error in the group collapsed

cross sections' Keff results and why most of the error occurs in the

top 6 energy groups where the anisotropic affect is most

predominate. It also explains why, in Table 3, we see a greater

amount of error in problems BRENT1, BRENT2, BRENT3, and BRENT11

(hydrogen moderated systems). Problem BRENT50, a carbon

moderated system has less error associated with the collapse than

the hydrogen moderated systems but more than BRENT60 a pure

uranium metal system.

To further support these observations and conclusions, we see in

Tables 5 and 6 that no matter how the cross sections are collapsed

the Koos are virtually the same. In an infinite system, scattering

interactions can be treated as truly isotropic. The infinite fluxes

are constant over space and representative of an equal number of

neutrons moving in every direction. Therefore, if we completely

eliminate the angular dependence, as in an infinite medium, the

collapse procedure is very accurate.
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Since we require the 2-group cross sections, we need to verify

that the collapse technique preserves numbers of neutrons and

process interaction rates. To do this we compare the scalar flux

profiles from calculations with the uncollapsed H-R 16-group cross

sections to those with the group collapsed cross sections. For

comparison, the flux profiles from the uncollapsed cross sections

are summed into the same ICOL a , the corresponding group

collapsed calculation, thus representing the same total number of

neutrons in each group collapsed energy span. Both flux profiles are

normalized to 1 for the last (slowest) energy group at the center of

the system.
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Figure 24, BRENT1, 16 energy groups summed into 4 broad groups;

ICOL=5,6,3,2.
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to determine a broad group diffusion coefficient does not result in

53
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Figure 25, BRENT1 collapsed into 4 energy groups; ICOL=5,6,3,2.

0Al

0.6j

0,4

,,\ Legend
\\ o .,..s p

ol-± 6 2bLS

S9... P

0 0 20 30 00 0 60 0
RADIUS [cml

Figure 26, BRENT1, 16 energy groups summed into 4 broad groups;
ICOL=7,5,1,3.
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Figure 28, BRENT1, 16 energy groups summed into 2 broad groups;
ICOL=13,3.
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Figure 29, BRENT1 collapsed into 2 enegy groups; ICOL=13,3.

Figures 24 through 29 show comparisons for some different

collapses. What is consistent throughout is that the group

collapsed cross sections' flux profiles do not vary significantly

from the H-R 16-group cross sections' flux profiles. Therefore, the

number of neutrons are preserved in the group collapsing process

used.

To determine if reaction rates are being conserved in the

collapse process, we make use of the System Balance Tables

provided in TWODANT's output. These tables tell us, by energy

group, how many neutrons are under going each type of interaction.

Again we sum the results from the 16-group cross sections into the

same ICOL of the corresponding collapse. This and the balance table
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from the corresponding collapsed calculation are then normalized to

a total fission source of 1.

Tables 7 and 8 are a comparison of one system. We see

extremely close agreement in all interactions. This show that, with

minor error, the overall breakdown of interactions does not change

in the collapsing process and for the most part the interaction rates

are being preserved. Note, however, that the scattering listed in

these tables is the total fraction of neutrons being scattered

without regard to their directional dependence (a scalar

representation).

Table 7, Balance table from problem BRENT1 TWODANT run with H-R
16 group cross sections summed into 2 groups with ICOL=13,3 and
normalized to a fission source of 1.

Enery roQn suc In-Scatter Self-Scatter Out-Scatter kAsrto

1-13 1.0 0 13.01489 0.9186828 0.0813172

14-16 0 0.9186828 64.87090 0 0.9186827

Table 8, Balance table from problem BRENT1 TWODANT run with
group collapsed ICOL=13,3 2 group cross sections normalized to a
fission source of 1.

EneLgy rQi JsQ or I-ct Self-Scatter Out-Scatter bsotion

1 1.0 0 13.10990 0.9167549 0.0832646

2 0 0.9167549 62.33466 0 0.9164495

We have tried to account for the anisotropic scattering behavior

by group collapsing the P1 cross sections in each system. Based on
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the above results, we see that this has not adequately preserved the

directional dependence of the scattering interactions. An additional

check is to repeat some of the above calculations with ISCT (the

Legendre order of expansion) equal to one. Also, since TWODANT

utilizes an Sn, quadrature approach for treatment of angle

dependence, we can try to vary the ISN (number of quadrature

directions).

Table 9, TWODANT Keff for problem BRENT10 with the H-R 16 group

cross section set and 2 group collapsed cross sections (ICOL=13,3)
with ISCT=O and varying ISN.

# of
energy groups ISN Keff-

16 8 1.07856
16 16 1.07829
2 8 1.32810
2 16 1.32809

Table 9 shows the results of this check method. What is obvious

is the error in the group collapsed results remain large. We also

see there is little difference in the two group determined Keff

based on the number of quadrature directions used in determining

the fluxes to be used in the collapse process. The collapse process

uses the scalar fluxes. The scalar fluxes are nothing more than the

sum of the angular or quadrature fluxes. Therefore, direction will

not be preserved based on the number of quadrature directions

selected because in using scalar fluxes we have neglected most of

the angular dependence.

71



The only way to ensure directional dependence is preserved is to

do a space/energy/direction collapse; use the discretized angular

fluxes in the collapse process to derive a set of cross sections that

are angularly dependent. This would result in several cross

sections for a given point in space for a given energy, which is a

nasty proposition. Additionally, there is not a method available to

insert a cross section set of this nature into TWODANT to verify the

results. It is also not practical for us to use a complicated cross

section set of this nature in our "simple" two-group diffusion

theory approach.

The main conclusion from this work is that the group collapse

methods are unable to adequately handle the angular/anisotropic

nature of neutron scattering interactions. The group collapsed

cross sections cannot be used to do Keff calculations with any

reasonable assurance of accuracy. This, however, may not affect

the utility of the group collapse method in "thermalness"

calculations as will be discussed next.

C. Group Collapsed Cross Sections In Two-Group Diffusion Theory.

Unlike the transport theory method used to determine the fine

group fluxes for use in the group collapsing, diffusion theory

relaxes the angular dependence. Since the majority of the error

associated with the group collapse method is in the treatment of

the angular dependence, the collapsed cross sections should be

adequate for use in diffusion calculations. Diffusion theory uses
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the diffusion coefficient, D, to relate the neutron current

(directional term) to the gradient of the flux. So the correct

calculation and collapsing of D should adequately treat the relaxed

angular dependence in the diffusion theory.

Applying the method of calculating and group collapsing the

diffusion coefficient presented earlier, the volume averaged flux

group collapse technique, and the methods of determining buckling

presented in sections 3.1, we calculate Keff for several unreflected

systems using the derived two-group analogy to the six-factor

formula. The results of this evaluation are presented in Table 10.

Table 10, Comparison of calculated Keffs from TWODANT/H-R 16-
group cross sections and diffusion theory/group collapsed 2-group
cross sections.

TWODANT DIFFUSION THEORY

PROBLEM 16-GROUP Kcff 2-(ROUPJeff % DIFFERENCE

BRENT1 0 0.984257 0.986627 +0.24

BRENT11 0.992137 1.002758 +1.07

BRENT12 0.990456 0.997935 +0.76

BRENT13 0.955103 0.931612 -2.46

BRENT14 0.985928 0.966664 -1.95

BRENT15 0.970805 0.953782 -1.75

BRENT16 0.967166 0.946143 -2.17

BRENT20A 0.972672 0.979596 +0.71

BRENT20B 1.011610 1.020979 +0.93

BRENT20C 0.981791 0.990152 +0.23

BRENT20D 0.997210 1.009725 +1.26

BRENT20E 0.990762 1.004361 +1.37

BRENT20F 1.002570 1.014947 +1.23
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With the differences in Keff between the 16-group transport and

2-group diffusion calculations ranging from 2.49% to less than

0.10% we are relatively comfortable with our approximations. We

are also assured that within the applicability of diffusion theory

our calculations of the factors of the six-factor formula for Keff

will be within acceptable limits for the simple hand calculation

technique we are attempting to provide.
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4. RESULTS.

As detailed earlier, we have selected P/(l1 2 *f 2 ) as the

parameter to describe the moderating capability or "thermalness" of

a system. The slowing down characteristics of a system are

adequately described by p, while T12 and f2 account for the

absorption characteristics. All of the important characteristics of

the slowing down process are present in the thermalness factor,

p/(1 2 *f 2 ). A plot of this parameter versus critical mass and

volume also serves to predict minimum critical mass and volume,

an important concept in nuclear criticality safety.

The thermalness factor, P/(71 2 *f2 ), for each of the systems

evaluated are presented in graphical format versus critical mass

and volume in Figures 30 through 33. As expected P/('1 2 *f2 ) does

predict the minimum critical mass and volume for each evaluated

fuel-moderator mixture.

The range of p/(712 *f2 ) corresponding to minimum critical mass

is 0.52 to 0.58. Comparing Figures 30 and 31 we find that this

range holds for both bare and reflected sytems. The shapes and

lowest points of the curves for the bare and reflected systems are

nearly identical. The difference is the magnitude of the critical

masses. As expected, the reflected systems have less critical mass

than the bare systems. This difference in mass, due to the reflector



savings, is the corresponding change of placement of the curves

with respect to the critical mass axis. This leads us to conclude

that the variation in flux profiles, used in the group collapsing

process, between the reflected and bare systems, though producing

a slight difference in cross sections for the two situations, does

not affect the thermalness factor.

The value of P/(1 2 *f2 ) corresponding to minimum critical

volume ranges from 0.42 to 0.52 for the bare systems and from 0.39

to 0.52 for the reflected systems. Looking at Figures 32 and 33 we

see that the difference between the bare and reflected ranges is

isolated to the U(30.3%)0 2 F2 -H 2 0 systems. As with the critical

mass comparisons, the other three systems have nearly identical

curve shapes and minimum points. The problem with the 30.3%

enriched systems is an inconsistency found in the literature. J. C.

Smith, et al. [Reference 12] reported that the minimum critical

cylindrical volume for these systems occurred at an H/X ratio of

between 120 and 130 for reflected systems (depending on the

radius of the cylinder) and an H/X ratio of 130 for bare cylinders

(independent of radius). However, the buckling conversions to

spheres reported by Paxton and Pruvost [Reference 1] do not reflect

these results. Based on this, the volumes for the two systems with

lowest P/(71 2 *f 2 ) factors were recalculated using TWODANT

eigenvalue searches. A similar discrepancy is not present for the

H/X ratio corresponding to minimum critical mass. The problem is

twofold. The first is suspicion of the buckling conversion from the
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cylinders to spheres. Without knowing the source of extrapolation

distances used we cannot confirm or deny either set of results.

Second, the converted sphere data is from a combination of 8, 12,

and 16 inch diameter cylinders, each system with unique

characteristic, such as H/X corresponding to the minimum critical

volume. Conversion to spheres will elliminate the uniques, but from

the data provided we cannot isolate, only suspect where the true

minimum occurs in spherical geometry. The bottom line is

suspicion of the U(30.3%)0 2 F2 -H 2 0 data at the lower H/X and

P/(T12 *f2 ) values.

The wider range of P/(T12 *f2 ) defining minimum critical volume

is a factor of enrichment. Enrichment has a larger effect on the

critical volume than on the critical mass. Since the P/(112*f 2 )

range is larger for minimum critical volume than minimum critical

mass, we can assume that we have not adequately treated the

enrichment effect on the systems. The range of P/(n 2 *f2 ) which

defines minimum critical volume is still narrower or better defined

than the the range of H/X for comparable systems. (Our results are

compared with Figure 2). Also, within the limits of the six-factor

formula, though enrichment does affect the values of il and f

slightly, enrichment has a predominant impact on the resonance

escape probability. The resonance escape probability is directly

related to enrichment. The less U2 3 8 , or the higher the enrichment,

the less resonance absorption and the higher the resonance escape

probability. Therefore, in this approach to defining a thermalness
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parameter, we have described the effect of enrichment in the best

manner possible.

One other thing to note is that for a small change in mass of

U2 3 5 there can be a large change in volume. For the lower U2 3 5

density systems, it requires a substantial change in volume to

slightly increase U2 3 5 mass. The opposite is true at higher

densities. Since critical mass and volume are interrelated, for a

small change in critical mass, based on the enrichment and fuel to

moderator ratio, we will see a larger corresponding change in

volume. Therefore, based on a parameter describing moderation and

enrichment, we expect to see a wider range of values corresponding

to minimum critical volume.

Overall, the results confirm that p/(T12 *f2 ) does an excellent job

in defining mass limitations. With a more detailed and accurate

critical experimental data base, the critical volume applications

look equally promising.
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5. CONCLUSIONS.

Our use of P/(T12 *f2 ) to define the "thermalness" of a system is

as accurate a definition as possible and takes into account the

factors important in a moderated system. Based on the limited

results of this study, we are comfortable with the potential of

P/(Tn2*f 2 ) to define mass and volume limits. The same range of

P/(T12 *f2 ) applies to both reflected and bare systems which is very

encouraging. The main advantage is its treatment of all of the

potential scattering interactions as well as the absorption

characteristics important in describing the moderating process

rather than just the number of hydrogen atoms to fissile atoms.

Before application in any capacity, much more benchmarking and

correlating must be done to ensure the precise ranges of P/(T12 *f2 )

are defined and applicable to the appropriate sytems.

Some very important supporting topics have been brought to

light during this study. The first is the problem with the flux

weighted group collapse method's ability to maintain directional

dependence for reapplication in fewer energy group transport

calculations. Though a very appropriate and accurate technique for

deriving few group cross sections for diffusion theory calculations,

more study needs done to extend this method to account for

anisotropic situations.

The final and most important topic is the inadequacy of the



critical experiments to be applied to parametric studies and/or

validation of numerical codes. There are many examples of

important experimental results that cannot be accurately applied

because of incomplete data. An example is the U(30.3%)0 2 F2 -H2 0

data, which does not specify the composition or type of stainless

steel used for the fissile solution container. Additionally, we must

be careful in blindly using data converted from one geometry to

another without knowing how and with what assumptions these

conversions were done. There is a valid need for a standard,

detailed, and complete set of benchmark criticals for use in the

criticality safety business.

We have attempted to provide a useful and better way to

characterize thermal systems and avoid an unwanted critical

situation. Our hope is that it may assist planners, designers, and

technicians in keeping the nuclear industry safe and prosperous.
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APPENDIX 1, Tabulation of Evaluated Critical Systems.

Table 11, Homogeneous U02 F2-H20, Water Reflected Spheres.
(4.89 wt/o U2 3 5 enriched uranium. Contained in a 0.1587 cm

thick Al spherical shell. 137.16 cm thick reflector)

U2 35  TWODANT 2-Group
Reference Density Volume Radius Mass H-R Diffusion

Name H/U23 5  (g/cm3) (L) (cm) (Kg U2 35) Keff Keff Ref

BRENTI 1099 0.02211 170.5 34.671 3.77 1.03889 1.06610 1,9

BRENT2 524 0.04254 44.9 22.047 1.91 1.01522 1.06110 1,9

BRENT2Aa 400 0.05347 37.4 20.748 2.00 1.00007 1.04830 9,10

BRENT2Ba 300 0.06686 38.2 20.900 2.55 1.00008 1.04621 9,10

BRENT2Ca 200 0.08900 37.5 20.764 3.34 0.99994 1.04654 9,10

BRENT2Da 100 0.13257 59.9 24.267 7.94 0.99994 1.04871 9,10

BRENT2Ea 150 0.10656 49.0 22.693 5.22 0.99994 1.04419 9,10

BRENT3 735 0.03179 64.6 24.943 2.05 1.00017 1.04385 1,9

BRENT4 643 0.03562 53.4 23.302 1.90 0.99779 1.04425 1,9

a. Critical experiments were unavailable at these H/Xs. This data was determined using
correlations for U02 F2 -H2 0 solution densities presented by Hugh Clark, Reference 10, and
the radius search capability of TWODANT.



Table 12, Homogeneous U02 F2-H20, Spheres.
(4.89 wt% U2 3 5 enriched uranium. Contained in a 0.1587 cm

thick Al spherical shell)

U2 3 5  
TWODANT 2-Group

Reference Density Volume Radius Mass H-R Diffusion
Name H/U235  (g/cm3 ) (L) (cm) (Kg U2 35) Keff Keff Ref

BRENT1 0 524 0.04254 69.3 25.444 2.94 0.98426 0.98663 1,9

BRENT1OAa 400 0.05347 63.9 24.807 3.42 1.00003 0.99834 9,10

BRENT10Ba 300 0.06686 67.4 25.246 4.51 1.00004 0.99560 9,10

BRENT1OCa 200 0.08900 69.5 25.501 6.18 0.99993 0.98955 9,10

BRENT1ODa 150 0.10656 91.3 27.934 9.73 1.00001 0.99177 9,10

BRENT1 1 735 0.03179 93.9 28.206 2.98 0.99214 1.00276 1,9

BRENT12 643 0.03562 79.9 26.730 2.84 0.99046 0.99794 1,9

a. Critical experiments were unavailable at these H/Xs. This data was determined using
correlations for U0 2 F2 -H2 0 solution densities presented by Hugh Clark, Reference 10, and
the radius search capability of TWODANT.
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Table 13, Homogeneous U30 8 -STEROTEX, Water Reflected Spheres.

(4.89 wt% U2 3 5 enriched uranium. 137.16 cm thick reflector)

U235  TWODANT 2-Group
Reference Density Volume Radius Mass H-R Diffusion

Name H/U23 5  (g/cm3) (L) (cm) (Kg U23 5) Keff Keff Ref

BRENT5 102 0.09450 152.5 33.107 14.4 0.98975 1.06021 1,9

BRENT6 124 0.08946 111.9 29.903 10.0 1.00805 1.06819 1,9

BRENT7 147 0.08280 104.7 29.266 8.7 0.98993 1.04269 1,9

BRENT8 199 0.06490 90.9 27.903 5.9 0.99230 1.04532 1,9

BRENT9 245 0.05600 83.4 27.178 4.6 0.97204 1.02338 1,9

BRENT9A 320 0.04800 76.9 26.416 3.6 0.98532 1.03268 1,9

BRENT9B 396 0.04040 79.5 26.674 3.2 0.98964 1.03715 1,9

BRENT9C 449 0.03743 85.0 27.276 3.2 0.99201 1.03748 1,9

BRENT9D 504 0.03340 95.4 28.346 3.2 0.99539 0.98485 1,9

BRENT9E 757 0.02220 194.8 35.961 4.3 1.00858 1.00676 1,9
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Table 14, Homogeneous U30 8 -STEROTEX, Spheres.
(4.89 wt/o U2 3 5 enriched uranium)

U2 3 5  
TWODANT 2-Group

Reference Densit Volume Radius Mass H-R Diffusion
Name H/U2 35  (g/cm3 ) (L) (cm) (Kg U23 5) Keff Keff Ref

BRENT13 102 0.09450 271.2 40.154 25.6 0.95510 0.93161 1,9

BRENT14 124 0.08946 208.0 36.756 18.6 0.98593 0.96666 1,9

BRENT15 147 0.08280 194.0 35.912 16.0 0.97081 0.95378 1,9

BRENT16 199 0.06490 164.1 33.963 10.7 0.96717 0.94614 1,9

BRENT17 320 0.04800 136.0 31.902 6.5 0.96993 0.95719 1,9

BRENT18 396 0.04040 135.0 31.824 5.4 0.97406 0.96427 1,9

BRENT1 9 449 0.03743 139.9 32.204 5.2 0.97885 0.97466 1,9

BRENT19A 504 0.03340 151.9 33.099 5.1 0.98087 0.97880 1,9

BRENTI 9B 757 0.02220 272.8 40.233 6.1 0.99355 1.00265 1,9
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Table 15, Homogeneous UF4 -CH 2 , Water Reflected Spheres.

(2.00 wt% U2 3 5 enriched uranium)

U2 3 5  TWODANT 2-GroupReference Densi, Volume Radius Mass H-R Diffusion

Name H/U235  (g/cm ) (L) (cm) (Kg U235) Keff  Keff Ref

BRENT25A 195 0.06167 257.0 39.441 15.9 0.97764 0.98243 1,11

BRENT25B 294 0.05193 161.0 33.748 8.4 1.01480 1.02335 1,11

BRENT25C 406 0.04367 139.0 32.135 6.1 0.98554 0.98976 1,11

BRENT25D 496 0.03875 142.0 32.364 5.5 1.00028 1.01172 1,11

BRENT25E 614 0.03214 163.0 33.887 5.2 0.99327 1.00600 1,11

BRENT25F 972 0.02433 413.0 46.198 10.1 1.00328 1.01554 1,11

a. Reference 11 reports a correction factor for variations in sytem densities in relation
to the material densities to account for voids in the assemblies. The values for densities
listed here are corrected by this factor.
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Table 16, Homogeneous UF4 -CH2 Spheres.

(2.00 wt/ U2 3 5 enriched uranium)

U2 3 5  TWODANT 2-Group
Reference Density Volume Radius Mass H-R Diffusion

Name H/U2 35  (g/crn) (L) (cm) (Kg U2 35) Keff Keff Ref

BRENT20A 195 0.06167 379.0 44.894 23.4 0.97267 0.97960 1,11

BRENT20B 294 0.05193 239.0 38.498 12.4 1.01161 1.02098 1,11

BRENT20C 406 0.04367 202.0 36.399 8.8 0.98179 0.99015 1,11

BRENT20D 496 0.03875 201.0 36.362 7.8 0.99721 1.00973 1,11

BRENT20E 614 0.03214 224.0 37.672 7.2 0.99076 1.00436 1,11

BRENT20F 972 0.02433 513.0 49.654 12.5 1.00257 1.01495 1,11

a. Reference 11 reports a correction factor for variations in sytem densities in relation
to the material densities to account for voids in the assemblies. The values for densities
listed here are corrected by this factor.
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Table 17, Homogeneous U02 F2-H20, Water Reflected Spheres.

(30.3 wt% U2 3 5 enriched uranium. Contained in a 0.163 cm thick
stainless steel container. 17.8 cm. thick reflector)

U2 35  TWODANT 2-Group
Reference Densi Volume Radius Mass H-R Diffusion

Name H/U23 5  (g/cm ) (L) (cm) (Kg U23 5) Keff Keff Ref

BRENT40b 76.7 0.2880 10.7 13.666 3.08 0.99973 0.94947 1,12

BRENT41C 106 0.2200 10.6 13.640 2.34 0.99994 0.93591 1,12

BRENT42 167 0.1460 11.6 14.043 1.70 1.00710 0.94229 1,12

BRENT43 257 0.09780 13.0 14.587 1.28 1.01344 0.97202 1,12

BRENT44 378 0.06750 16.1 15.664 1.08 1.00602 0.98187 1,12

BRENT45 439 0.05840 17.1 15.982 1.00 0.99524 0.97665 1,12

BRENT46 657 0.03940 27.8 18.793 1.10 1.00702 1.01000 1,12

BRENT47 815 0.03170 38.1 20.874 1.24 1.00444 1.01529 1,12

a. The two-group diffusion analysis neglected the stainless container. The addition of the
stainless steel container added an average reactivity effect of 0.00865 at the lower WXs. At
higher H/Xs the stainless steal acts as a poison with an associated negative reactivity.

b. According to Reference 12, the minimum volume occurred between H/X=120-130.
The volume listed in Reference 1 for H/X=76.7 was 19.5 L. This value is from a buckling
conversion from the cylinderical experiment to a sphere. Without the extrapolation
distances used in the calculation I cannot verify this number. Therefore, the volume for
H/X.76.7 listed here is derived using a radius search with TWODANT.

c. BRENT41 is listed in Reference 1 as volume=1 1.6 L. This is still larger than the
volume derived for BRENT40o. For the same reasons BRENT40 was adjusted, the critical
volume for BRENT41 was derived.
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Table 18, Homogeneous U0 2F2-H20 Spheres.

(30.3 wtO U2 3 5 enriched uranium. Contained in a 0.163 cm thick
stainless steel container)

U2 35  TWODANT 2-Group
Reference Densi~' Volume Radius Mass H-R Diffusion

Name H/U23 5  (g/cm ) (L) (cm) (Kg U23 5) Koff Keff Ref

BRENT30b 76.7 0.2880 21.9 17.358 6.31 1.00005 0.93938 1,12

BRENT31 106 0.2200 20.0 16.839 4.38 0.98408 0.92330 1,12

BRENT32 167 0.1460 20.0 16.839 2.93 0.98237 0.92861 1,12

BRENT33 257 0.09780 22.1 17.409 2.16 1.00159 0.96082 1,12

BRENT34 378 0.06750 26.3 18.448 1.77 0.99892 0.97218 1,12

BRENT35 439 0.05840 27.7 18.770 1.62 0.99077 0.96759 1,12

BRENT36 657 0.03940 42.1 21.581 1.66 1.00691 1.00351 1,12

BRENT37 815 0.03170 55.5 23.663 1.76 1.00526 1.01001 1,12

a. The two-group diffusion analysis neglected the stainless container. The addition of the
stainless steel container added an average reactivity effect of 0.00865 at the lower H/Xs. At
the higher H/Xs, the effect is lessened.

b. According to Reference 12, the minimum volume occurred at H/X=130. The volume
listed in Reference 1 for H/X=76.7 was 19.5 L. This value is from a buckling conversion
from the cylinderical experiment to a sphere. Without the extrapolation distances used in
the calculation I cannot verify this number. Therefore, the volume for H/X=76.7 listed
here is derived using a radius search with TWODANT.
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Table 19, Computationally Derived Critical Spheres.
(Critical size was determined using TWODANT's dimension search

capabilities)

U235

Reference Fuel. Enrichment Density Volume Radius Mpss
Name Moderator (wt/o) (g/cm3 ) (L) (cm) (Kg U2 35)

BRENT50a U-C 93 0.17530 1182.22 65.595 207.24

BRENT60 U metal 93.71 17.5613 2.76 8.697 48.47

a. Fuel-moderator mixture density to begin calculation from Figure 46, Reference 1.
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Appendix 2, Two-Group Six-Factor-Formula FORTRAN 77
Program.

* This program takes 2DANT output in 16 energy groups,
" collapses the data into two groups (groupl >lev, group2<lev],
* and computes the individual factors of the six-factor
* formula [as derived in D&H, p. 437]. Assumes energy
* groups choosen so chil =1, chi2=0. It reads the 16 group data
* from twodant output from the input file 'xsec.inp'. Input in
* this file is ordered;'problem name'(less than 40 characters),
* type geometry(1 =sphere/2=inf cylinder/3=finite cylinder),r and/or

* h, number of isotopes other than fuel in the core,'isotope',atom
* density(use TWODANT isotope names) for each other than fuel
* isotope in the core, nusigf,sigt,siga,sigs g-g,sigs(1) g-g*,
* sigs g-g+1 ,sigs g-g+2,sigs g-g+3,sigs g-g+4,sigs g-g+5,flux
* for each of 16 groups. [* anisotropic self scatter].
* The subroutine "moderator" figures the macroscopic absorption
* cross section for the other than fuel (fissionable materials)

* in the core inorder to compute eta and f seperately. This is
* not possible using just the TWODANT output, which only gives
* zone cross sections.

* ** *** *

* SYMBOLS

* n usigf=n u* macroscopic fission cross section.
* sigt=total macroscopic cross section.
* siga=macroscopic absorption cross section.

* sigsxy=macroscopic scattering from group x to y.
* sigr=removal cross section.
* r= physical radius of core.

* h= physical height of core.
* ex-extrapolated distance.
* lambatr= transport mean free path.
* d=diffusion coefficient.
* I-diffusion length.
* bsq=bucklingA2.
* f1 n1 -fast utilization factor*fast eta



" f2n2=thermal utilization factor-thermal eta.
" pnll -fast non-leakage probability.
" pnl2=thermal non-leakage probability.
" e=fast fission factor.
" a(i, 1)=nusigf(i) a(i ,2)=sigt(i)
" a(i,3)=siga(i) a(i,4)=sigs g-g
" a(i,5)=sigsl g-g (anisotropic) a(i,6)=sigs g-g+1
" a(i,7)=sigs g-g+i2 a(i,8)=sigs g-g+3
" a(i,9)=sigs g-g+4 a(i,1O)=sigs g-g+5
" a(i,11)=flux(i) i-energy group i to 16.

*open data file and designate variables.

implicit double precision(a-z)
real nusigfl ,nusigf2,Iambatr,l11,12,k,a(1 6,11 ),n(1 0)
real fnusf( 16) ,fsigt(1 6) ,fsiga(1 6) ,fsgsO(1 6) ,fsgsl (16)
real fsgs2(1 6) ,fsgs3(1 6) ,fsgs4( 16) ,fsgs5( 16) ,dg(1 6) ,fdgl (6)
character*40 name
character*6 mod(1 0)
open (u nit= 1,file='xsec. inp,status='old')
open (u nit=2,file=facfor',status='new')

*enter input conditions from xsec.inp file.

*read in problem name.
read(1 *) name
write(*,*) name

" read in geom type; 1 =sphere, 2=inf cylinder, 3=finite cylinder.
read(1 *) geom

" read in core dimensions.
if(geom .eq.3)then

read(1 ,*)r,h
else

read(1 *)r
endif

" read in number of isotopes other than fuel.
read(1 ,*)m

" read in the isotopes and atom densities.
do 5 i=1,m
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read(1 ,*)mod(i),n(i)
write(*,*) mod(i) ,n (i)

5 continue
read in the 16 group cross section and flux array.

do 15 i=1,16
read(1 ,*) (a(i~j)j=1, 1l)
write(*,*) a(i, 11)

15 continue
input data for a reflected system. If reflected it requires

*the reflectors data to be inputed by the input file "refl.inp".
write(*,*ylIs system reflected? 1 =no/2=yes'
read(*,*) ref
if(ref.eq.2)then
write(* ,*)'Is reflector water? 1 =no/2=yes'
read(*,*)refm

endif

*collapse 16 group data from unit 1 into two groups.

*determine sum of the fluxes for the collapsed group 1.
sfluxl =0
do 110 i=1,13

sfluxl =sfluxl +a(i,1 1)
110 continue

write(*,*)'sum fluxes group 1 =',sfluxl
*determine sum of the fluxes for the collapsed group 2.

sflux2=0
do 120 i=14,16

sflux2=sflux2+a(i,1 1)
120 continue

*multiply all group values by the group flux.
do 125 i=1,16

fnusf(i)=a(i,1 )*a(il1 1)
fsigt(i)=a(i,2)*a(i,1 1)
fsiga(i)=a(i,3)*a(i,1 1)
fsgso(i)=a(i,4)*a(i,1 11)
fsgsl (i)=a(i,6)*a(i,1 1)
fsgs2(i)=a(i,7)*a(i,1 1)
fsgs3(i)=a(i,8)*a(i,1 1)
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fsgs4(i)=a(i,9)*a(i,1 1)
fsgs5(i)=a(i,1 O)*a(i,1 1)

" calculate diffusion coefficient for each group and multiply
" by group flux.

dg(i) =1.OdOO/(3 .0d00(a(i,2)-a(i,5)))
fdg(i)=dg(i)*a(i,1 1)

125 continue
" determine numerators for group 1 calculations.

snusfi =0
ssigtl =0
ssigal =0
ssgsol =0
sdl =0
do 130i=1,13

snusfi =snusfl1 +fnusf(i)
ssigtl =ssigtl +fsigt(i)
ssigal =ssigal +fsiga(i)
ssgsol =ssgsOl +fsgso(i)
sdl 1 sdlI +fdg (i)

130 continue
write(* ,*)ysnusfl ,t1 ,al'
write(*,*)snusfl ,ssigtl ,ssigal

*determine numerators for groupi self scatter, sigsl 1.
ssgsll1=0
do 140 i=1,12

ssgsl 1 =ssgsl 1 +fsgsl (i)
140 continue

ssgs2l =0
do 150 i=1,1 1

ssgs2l =ssgs2l +fsgs2(i)
150 continue

ssgs3l =0
do 160 i=1,10

ssgs3l =ssgs3l +fsgs3(i)
160 continue

ssgs4l =0
do 170 i=1,9

ssgs4l =ssgs4l +fsgs4(i)
170 continue

ssgs5l =0
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do 180 i-1,8
ssgs5l =ssgs5l +fsgs5(i)

180 continue
calculate group 1 constants.

nusigfl =snusfl /sfluxl
sigtl -ssigtl/sfluxl
sigal =ssigal /sfluxl
sigsl 1 =(ssgs~l +ssgsl 1 +ssgs2l +ssgs3l +ssgs4l +ssgs5l )/sfluxl
dl=sdl/sfluxl

calculate sigsl 2.
ssgs22=fsgs2(1 2)+fsgs2(1 3)
ssgs32=fsgs3(1 1 )+fsgs3(i 2)+fsgs3(1 3)
ssgs42=fsgs4(1 0)+fsgs4(1 1 )+fsgs4(1 2)
ssgs52=fsgs5(9)+fsgs5(1 0)+fsgs5(1 1)
sigsl 2=(fsgs 1(1 3)+ssgs22+ssgs32+ssgs42+ssgs52)/sflux 1

*determine numerators for group 2 calculations.
snusf2=0
ssigt2=0
ssiga2=0
ssgs03=0
sd2=0
do 190i=14,16

snusf2=snusf2+fnusf(i)
ssigt2=ssigt2+fsigt(i)
ssiga2=ssiga2+fsiga(i)
ssgs03=ssgsO3+fsgsO( i)
sd2=sd2+fdg(i)

190 continue
ssgsl 3=fsgsl (1 4)+fsgsl (15)

*calculate group 2 constants.
n usigf2=snusf2lsflux2
sigt2=ssigt/sfl ux2
siga2=ssiga2/sfl ux2
sigs22=(ssgsO3+ssgsl 3+fsgs2(1 4))/sflux2
d2=sd2/sflIux2

*Calculate removal cross section.

signl =sigal +sigsl 2
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*Calculate L A2

ii =dl/sigrl
12=d2/siga2

*If system is reflected, subroutine reflector calculates the
*buckling of the system.

if(ref.eq.2)then
call reflector(ssigal ,ssiga2,snusfl ,snusf2,sdl ,sd2,

+ sfluxl ,sflux2,r,bsq,delta,12,dl ,sigsl 2,refm)
if (refm.eq. 1 )then

go to 20
else if (ref m.eq. 2)the n

r=r+delta
endif

endif

*calculate bucklingA2. Buckling is determined for one group only
*The two group Ds are collapsed into one group [for un-refl

systems].

pi=3.1 41 592654d00
rl =r
hi1 =h

10 if(geom.eq.1 )then
bsq=(pi/rl )**20Od00

elseif(geom.eq.2)then
bsq=(2.405d00/rl )**2.OdOO

elseif(geom.eq.3)then
bsq=((2.405d00/rl )**2.dOO)+((pi/hl1)**2.dOO)

endif
if(refm.eq.2)go to 20

*calculate extrapolated distance.
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*dd is the diffusion coefficient determined from input data.
*d is the one group diffusion coefficient as collapsing
*from dl and d2.

dd=(sdl +sd2)/(sfluxl +sflux2)
d=(((d2*bsq+siga2)*dl1)+(sigsl 2*d2))/(d2*bsq+siga2+sigsl 2)
lambatr=3.OdOO*d
ex=0.71 dOO/lambatr
write(*,*) ex
if(geom .eq.3)then

r2=r+ex
h2=h+2.d00*ex

else
r2=r+ex

endif

*check to see if correct extrapolation distances are used.

z=abs(rl -r2)
if(z.lt. 1.Od-3)then
go to 20

else
rl =r2
111=112
go to 10

endif

*calculate fn, utilization factor*eta.

20 fi ni=nusigfl/sigrl
f2n2=nusigf2/siga2

*calculate p, resonance escape probability.

p=sigsl 2/signl

*calculate non-leakage probabilities.
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pnll =1 .OdOO/(1 .OdOO+I1 *bsq)
pnI2=1 .OdOO/(1 .OdOO+12*bsq)

*calculate e, fast fission factor.

e=l1.OdOO+((nusigfl *(siga2+d2*bsq))/(nusigf2*sigsl 2))

*determine siga of the other than fuel material inorder to compute
*eta and f seperately.

call moderator(mod,n,a,sigaol ,sigao2,sfluxl ,sflux2,m)

*determine eta and f for the two groups

sigafi =sigal -sigaol
sigaf2=siga2-sigao2
etal =nusigfl1 /sigafl
fi =sigafl/sigrl
eta2=n usigf2lsigaf2
f2=sigaf2/siga2

*verify calculations by determining k using derived factors.

k=f2n2*p*e*pnllpnl2

*output to data file.

write(2,*)~ ',name
write(2,*)
write(2,*)~ fi1 n1 =',f1 n1,' f2n2=',f2n2
write(2,*)
write(2,*) 'etal =',etal,' fi =',fl
write(2,*) '
write(2,*)' eta2=',eta2,' f2=',f2
write(2,*) "
write(2,*) 9  p=',p,' fast fission factor=',e
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write(2,*)
write(2,*)I PNL1 =',pnll , PNL2=',pnI2
write(2,*)
write(2,*)' keff=',k
write(2,) D1 =',dl ,'D2=',d2,'dd=',dd,'d=',d
write(2,*)' nusigf2,sigt2,siga2'
write(2,*)' ',nusigf2,sigt2,siga2
write(2,*)' nusigfl ,sigtl ,sigal'
write(2,*) '',nusigf l,sigtl ,sigal
write(2,*)u sigsl 1 ,sigsl 2,sigs22'
write(2,*)' ',sigsl 1 ,sigsl 2,sigs22
write(2,*)' sigao2=',sigao2,'sigaol .',sigaol

stop
end

subroutine moderator(mod, n,a,sigaol ,sigao2,sfluxl ,sflux2,m)

*This subroutine takes the atom densities of each isotope,other
than
" the fuel, in the core and calculates the macroscopic absorption
" cross section for the other than fuel materials in the core.

implicit double precision(a-z)
real n(1 0),a(1 6,1 1),c(1 6),sigal (1 O),siga2(1 O),fsigai(1 6)
character*6 mod(1 0)

reinitialize sum variables.
sigaol =0
sigao2=O

check the isotope and match it to its appropriate cross section
set.
"'The following c(1 -16) arrays are the sixteen group microscopic
"'absorption cross sections for each listed isotope.
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do 10 i=1,m
if(mod(i) .eq.'H')then

* hydrogen 'H'
c(1 )=0.0
c(2)=0.o
c(3)=0.O
c(4)=O.0
c(5)=0.o
c(6)=0.O
c(7)=0.o
c(8)=1 .000225d-3
c(9)=4.0001 87d-3
c(O 0)=8.0001 95d-3
c(1 1 )=1 .4000 17d-2
c(1 2)=2.500021 d-2
c(1 3)=4.500001 d-2
c(1 4)=6.999993d-2
c(1 5)=1 .299999d-1
c(1 6)=3.300000d-1

elseif(mod(i).eq.'O1 6')then
* oxygen '016'

c(1 )=4.OOOOOOd-2
c(2)=0.0
c(3)=O.0
c(4)=0.0
c(5)=0.0
c(6)=0.0
c(7)=0.0
c(8)=0.0
C(9)=0.0
c(1 0)=0.O
c(O 1 )=0.0
W(12)=0.0
c(1 3)=0.0
c(1 4)=0.0
W(15)=0.0
c(1 6)=2.000033d-4

elseif(mod(i).eq:'F1 9')then
Tl '9'
C(1 )=1 .OOOOOOd-1
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c(2)=.O
c(3)=0.0
c(4)=2.000332d-4
c(5) -2.000332d-4
c(6)=0.O
c(7)=0.0
c(8)=0.0
c(9)=0.0
c(1 0)=0.0
c(1 1)=0.0
c(1 2)=0.0
c(1 3)-i1.0000 16d-3
c(1 4)=2.000004d-3
c(1 5)=4.000008d-3
c(1 6)=8.00001 6d-3

elseif(mod(i) .eq.'C')then
* carbon 'C'

c(1 )=0.0
c(2)=0.0
c(3)=0.0
c (4 )=0 .0
c(5)=0.0
c(6)=0.0
c(7)=0.0
c(8)=0.0
c(9)=0.0
c(1 0)=0.0
c(1 1 )=0.0
c(1 2)=0.0
c(1 3)=0.0
c(1 4)=0.0
c(1 5)=6.999970d-4
c(1 6)=2.999961 d-3

elseif(mod(i) .eq.'N')then
* nitrogen 'N'

c(1 )=2.500000d-1
c(2)=1 .1 OOOO0d-1
c(3)=4.000002d-2
c(4)=4.OOOOOOd-2
c(5)=2.000033d-3
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c(6)=2.000033d-3
c(7)=4.000067d-3
c(B)-7.999957d-3
c(9)=1 .899993d-2
c(1 0).4.000008d-2
c(1 1 )-7.000005d-2
c(1 2)=1 .200000d-1
c(1 3)=2.200000d-1
c(1 4)=3.600001 d-1
c(1 5)-6.400001 d-1
c(1 6)=1 .670000d00

endif

*Compute the two group absorbtion macroscopic cross section for
*each isotope and sum them to get a total other than fuel
*macroscopic cross section.

do 20 j=1, 16
fsigaiUj)=cOj)*n(i)*aOj,1 1)

20 continue
sf sail =0
do 30 j-1, 13

sfsai 1 sfsail 1 -fsigaiaj)
30 continue

sfsai2-fsigai(1 4) +fsigai (1 5)+f sigai (16)
sigal (i)=sfsail/sfluxl
siga2(i)=sfsai2lsflux2
sigaol =sigaol +sigal (i)
sigao2=sigao2+siga2(i)

10 continue
return
end

subroutine reflector(ssigal ,ssiga2,snusfl1,snusf2,
" sdl ,sd2,sf luxl ,sf lux2, r,bsq,delta,12,dl,
" sigsl 2,refm)
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* this subroutine calculates the reflector saving for a system.
* it reads the reflector data from an input file "REFL.INP".
* The order of data in this input file is; reflector thickness,
* sigt,siga,sigsl g-g (anisotropic self scatter), and flux.

implicit double precision(a-z)
real d(1 6,4),gdr(1 6),fsigar(1 6),lr,nusigf,msq,lhs,12
character*40 name
open(unit=3,file='refl.inp',status='old')

* Collapse siga,nusigf,and D of the core into one group.
* This is for the calculation of material buckling, used
* as a first guess in solving for the actual buckling.

siga=(ssigal +ssiga2)/(sflux 1 +sflux2)
nusigf=(sn usfl +snusf2)/(sfl ux 1 +sflux2)
dd=(sdl +sd2)/(sfluxl +sflux2)

* Calculate material buckling of the core.
e

bmc=dsqrt((nusigf-siga)/dd)
write(*,*) 'bmc=',bmc

* Read in and collapse reflector data into one group.

read(3,*) name
write(*,*)'reflector file is for',name
read(3,*) b
do 10 i=1,16

read(3,*) (d(ij),j=1,4)
10 continue

* Sum the reflector fluxes.

sfluxr=0.0
do 20 i=1,16

sfluxr=sfluxr+d(i,4)
20 continue

* Calculate the diffusion coefficient for the reflector.
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sdr=0.0
do 30i=1,16

gdr(i)=d(i,4)/(3.OdOO* (d(i , 1)-d(i,3)))
sdr=sdr+gdr(i)

30 continue
dr=sdr/sfluxr

*Collapse siga of the reflector into one group.

sfsgar=0.0
do40 i=".,16

fsigar(i)=d(i,2)*d(i,4)
sfsgar=sfsgar+fsigar(i)

40 continue
sigar=sfsgar/sfluxr

*Calculate L of the reflector.

I r-dsqrt(dr/sigar)

*Calculate the reflector savings.

*For a slab reactor this is the equation for reflector savings.
* delta= (datan (((dd*bmc* lr)/dr)*dtan h (b/Ir)))/bmc

*For a reflected sphere(assumnes infinite reflection).

if(refm.eq. 1 )then
rhs=1 .0d00-((dr/dd)*(r/lr+l1))
bmcr=bmc*r
x=bmcr/1 0.OdOO

50 do 60 br=bmcr,0.0,-x
lhs=br/dtan(br)
if(lhs.gt.0.0)go to 60
error=abs((lhs-rhs)/rhs)
if (error. lt.1 .Od-4)go to 70
if(lhs.gt.rhs)then
bmcr-br+x
x-x/l 0.OdOO
go to 50
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endif
60 continue

write( *)Ireflected buckling didnot converge!!!
70 buckl=br/r

bsq=buckl**2.OdOO
else if (ref m. eq.2)then
tau=dl/sigsl 2
msq=12+tau
delta=7.2+(O.1 O*(msq-4O.0))

eridif

return
end
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Appendix 3, Group Collapsing FORTRAN 77 Program.

*This program reads the xsec.inp file as specified in the
*THESISi .for program (Appendix 2). It collapses cross sections into
*a user defined
ICOL lAW the theory outlined in Section 3.3.

imlctdul peiinah

implicit double precisiona-h)
implicit double precision(j-m)

real nusigf(1 6)
dimension a(1 6,1 1),ad(1 O),ic(1 6),icol(1 6)
dimension sflux(1 6) ,fnusf(1 6) ,fsigt(1 6) ,fsiga(1 6) ,fsgsO(1 6)
dimension fsgsl (1 6) ,fsgs2(1 6) ,fsgs3(1 6) ,fsgs4(1 6) ,fsgs5(1 6)
dimension sfnusf (1 6) ,sfsigt(1 6) ,sfsiga(1 6) ,sfsgsO(1 6)
dimension sfsgsl (1 6) ,sfsgs2(1 6) ,sfsgs3(1 6) ,sfsgs4(1 6),

sfsgs5(1 6)
dimension sfsgg(1 6),sfsggl (1 6),sfsgg2(1 6),sfsgg3(1 6),

sfsgg4(1 6)
dimension sfsgsl 1(1 6),sfsgs2l (1 6),sfsgs3l (1 6),sfsgs4l (16)
dimension sfsgs5l (16) ,sfsgs22(1 6) ,sfsgs32( 16) ,sfsgs42(1 6)
dimension sfsgs52(1 6) ,sfsgs33(1 6) ,sfsgs43(1 6) ,sfsgs53(1 6)
dimension sfsgs44(1 6) ,sfsgs54( 16) ,sfsgs55(1 6)
dimension sigt(1 6) ,siga( 16) ,sgsgg(1 6),sgsgg 1(1 6),sgsgg2(1 6)
dimension sgsgg3(1 6) ,sgsgg4(1 6) ,sgsgg5(1 6)
character*40 name
character*6 mod(1 0)
open (u nit=1 ,file=xsec. inp,status='old')
open(unit=1 1 ,file='collapse.dat,status=new')

*Read in data from xsec.inp file [generic file for use with thesisi].

*problem name
read(1 *) name
write(*,*) name

" geom type; 1 -sphere, 2=inf cyl, 3= finite cyl
read(1 *) geom

"core dimensions.



if(geom.eq.3)then
read(1 ,*) r,h

else
read(1 ,*) r

endif
* number of isotopes other than fuel.

read(1 ,*) m
isotopes and atom densities of other than fuel material.

do 5 i=1,m
read(1 ,*) mod(i),ad(i)

5 continue
* 16 group cross sections and flux array as defined above.

do 10 i=1,16
read(1 ,*) (a(ij),j=1,11)

10 continue
* from screen input number of broad groups and group breakdown.

12 write(*,*) 'input number of desired broad groups [NBG]'
read(*,*) nbg
ico=0
do 15 n=l,nbg

write(*,390) n
read(*,*) ic(n)
ico=ico+ic(n)
icol(n)=ico
write(*,*) icol(n)

15 continue
if(icol(nbg).ne.16)then
write(*,*)'SUM OF ICOL VALUES .NE. 16'
goto 12

endif
* If collapsing microscopic cross section and you want macroscopic
" input the atom density of the applicable isotope. For my purpose
* this is primarily for collapsing of P1 cross sections.

write(*,*)'lF A MICRO CROSS SECTION SET AND MACRO DESIRED....'
write(*,*)'lNPUT ATOM DENSITY OF ISOTOPE. OTHERWISE INPUT

0.'
read(*,*)adh

* Determine the sum of the fluxes for each broad group
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do 20 n=1 ,nbg
sflux(n)-0.0
if(n-1 .eq.0)then

do 30 i-i ,icol(n)
sflux(n)-sflux(n)+a(i,1 1)

30 continue
else

do 40 i=icol(n-1)+1 ,icol(n)
sflux(n)=sflux(n)+a(i,1 1)

40 continue
endif

20 continue

*Multiply each group value by its corresponding flux.

do 50 i-, ,16
fnusf(i)=a(i,1 )*a(i,1 1)
fsigt(i)=a(i,2)*a(i,1 1)
fsiga(i)=a(i ,3)* a(i, 11)
fsgso(i)=a(i,4)*a(i,1 1)
fsgsl (i)=a(i,6)*a(i,1 1)
fsgs2(i)=a(i,7)*a(i,1 1)
fsgs3(i)=a(i,8)*a(i,1 1)
fsgs4(i)=a(i,9)*a(i,1 1)
fsgs5(i)=a(i, 1 0)*a(i, 11)

50 continue

*Determine numerators for nusigf,sigt,siga collapse.
*The broad group self scatter contribution from the 16 group
self scatter will also be summed during this process.

do 60 n=1,nbg
sfnusf(n)=0 .0
sfs igt(n) =0.0
sfsiga(n)=0.0
sfsgsO(n)=0.0
if(n-1 .eq.0)then



do 70 i-i ,icol(n)
sf nusf(n)=-sfnusf (n)+fnusf(i)
sfsigt(n)=sfsigt(n)+fsigt(i)
sfsiga(n)=sfsiga(n)+fsiga(i)
sfsgsO(n)=sfsgsO(n)+fsgsO(i)

70 continue
else
do 80 i=icol(n-1)+1,icol(n)

sfnusf(n)=sfnusf(n)+fnusf(i)
sfsigt(n)=sfsigt(n)+fsigt(i)
sfsiga(n)=sfsiga(n)+fsiga(i)
sfsgsO(n)=sfsgsO(n)+fsgsO(i)

80 continue
endif

60 continue

*Calculate self scatter numerators for each broad group.

do 90 n=1,nbg
sfsgg (n)=0 .0
sfsgsl (n)=.0.
sfsgs2(n).0.
sfsgs3(n)=0.0
sfsgs4(n)=0.0
sfsgs5(n)=0 .0
if(n.eq.1 )then

if (ic(n).eq. 1 )then
sfsgg(n)=sfsgsO(n)
goto 90

elseif(ic(n) .eq.2)then
sfsgg(n)=sfsgsO(n)+fsgsl (1)
goto 90

elseif(ic(n) .eq.3)then
sfsgg(n)=sfsgsO(n)+fsgsl (1 )+fsgsl (2)+fsgs2(1)
goto 90

elseif(ic(n) .eq.4)then
sfsgg(n)=sfsgsO(n)+fsgsl (1 )+fsgsl (2)+fsgsl (3)+

+ fsgs2(1 )+fsgs2(2)+fsgs3(1)
goto 90
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elseif(ic(n).eq.5)then
sfsgg(n)=sfsgsO(n)+fsgsl (1 )+fsgsl (2)+fsgsl (3)+fsgsl (4)+

+ fsgs2(1 )+fsgs2(2)+fsgs2(3)+fsgs3(1 )+fsgs3(2)+
+ fsgs4(1)

goto 90
elseif(ic(n) .ge.6)then
do 100 i-i ,icol(n)-1
sfsgsl (n)=sfsgsl (n)+fsgsl (i)

100 continue
do 110 i=1 ,icol(n)-2

sfsgs2(n)=sfsgs2(n)+fsgs2(i)
110 continue

do 120 i=1,icol(n)-3
sfsgs3(n)=sfsgs3(n)+fsgs3(i)

120 continue
do 130 i=1,icol(n)-4

sfsgs4(n)=sfsgs4(n)+fsgs4(i)
130 continue

do 140 i-i ,icol(n)-5
sfsgs5(n)=sfsgs5(n)+fsgs5(i)

140 continue
sfsgg(n)=sfsgsO(n)+sfsgsl (n)+sfsgs2(n)-isfsgs3(n)+

+ sfsgs4(n)+sfsgs5(n)
goto 90

endif
elseif(n .ge.2)then

if(ic(n).Ie.1 )goto 200
do 150 i=icol(n-1)i-1,icol(n)-1
sfsgsl (n)=sfsgsl (n)+fsgsl (i)

150 continue
if(ic(n).Ie.2)goto 200
do 160 i=icol(n-1 )+1 ,icol(n)-2

sfsgs2(n)=sfsgs2(N)+fsgs2(i)
160 continue

if(ic(n).Ie.3)goto 200
do 170 i=icol(n-1 )+1 ,icol(n)-3

sfsgs3 (n)=sfsgs3(n)+fsgs3 (i)
170 continue

if(ic(n).Ie.4)goto 200
do 180 i=icol(n-1 )+1 ,icol(n)-4

113



sfsgs4(n)=sfsgs4(n)+fsgs4(i)
180 continue

if (ic(n).le.5)goto 200
do 190 i=icol(n-1 )+1 ,icol(n)-5

sfsgs5(n)=sfsgs5(n)+fsgs5(i)
190 continue
200 sfsgg(n)=sfsgsO(n)+sfsgsl (n)+sfsgs2(n)+sfsgs3(n)+

+ sfsgs4(n)+sfsgs5(n)
end if

90 continue

*Calculate the numerator for the broad group down scatter g-g+1.

if(nbg.eq.1 )goto 260
do 210 n=1 ,nbg-1

sfsgsl 1 (n)=fsgsl (icol(n))
if (ic(n). eq. 1 )then

if(ic(n+1 ).eq.1 )then
sfsgs2l (n)=0.0
sfsgs3l (n)=0.0
sfsgs4l (n)=0.0
sfsgs5l (n)=0.0

elseif(ic(n+1 ).eq.2)then
sfsgs2l (n)=fsgs2(icol(n))
sfsgs3l (n)=0.0
sfsgs4l (n)=0.0
sfsgs5l (n)=0.0

elseif(ic(n+1 ).eq.3)then
sfsgs2l (n)=fsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n))
sfsgs4l (n)=0.0
sfsgs5l (n)=0.0

elseif(ic(n+1 ).eq.4)then
sfsgs2l (n)=fsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n))
sfsgs4l (n)=fsgs4(icol(n))
sfsgs5l (n)=0.0

elseif(ic(n+1 ).ge.5)then
sfsgs2l (n)=fsgs2(icol(n))
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sfsgs3l (n).fsgs3(icol(n))
sfsgs4l (n)=fsgs4(icol(n))
sfsgs5l (n)-fsgs5(icol(n))

endif
elseif(ic(n).eq.2)then

if(ic(n+1 ).eq.1)then
sfsgs2l (n)=fsgs2(icol(n)-1)
sfsgs3l (n)-O.O
sfsgs4l (n)-O.O
sfsgs5l (n)-O.O

elseif (ic(n+ 1 ) .eq.2) then
sfsgs2l (n)=fsgs2(icol(n)-1 )+fsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n)-1)
sfsgs4l (n)=O.O
sfsgs5l (n)=O.O

elseif(ic(n+1 ).eq.3)then
sfsgs2l (n)=fsgs2(icol(n)-1 )+fsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs4l (n)--fsgs4(icol(n)-1)
sfsgs5l (n)=O.O

elseif(ic(n+ ) .eq.4)then
sfsgs2l (n)rnfsgs2(icol(n)-1 ).tfsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs4l (n)=fsgs4(icol(n)-1 )+fsgs4(icol(n))
sfsgs5l (n)=fsgs5(icol(n)-1)

elseif (ic(n+ 1 ).ge.5) then
sfsgs2l (n)=fsgs2(icol(n)-1 )+fsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs4l (n)=fsgs4(icol(n)-1 )+fsgs4(icol(n))
sfsgs5l (n)=fsgs5(icol(n)-1 )+fsgs5(icol(n))

endif
elseif(ic(n) .eq.3)then

if(ic(n+1 ).eq.1 )then
sfsgs2l (n)=fsgs2(icol(n)-1)
sfsgs3l (n)=fsgs3(icol(n)-2)
sfsgs4l (n)=O.O
sfsgs5l (n)=O.O

elseif(ic(n+1 ).eq.2)then
sfsgs2l (n)=fsgs2(icol(n)-1 )+fsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n)-2)+fsgs3(icol(n)-1)
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sfsgs4l (n).fsgs4(icol(n)-2)
sfsgs5l (n)=O.O

elseif(ic(n+1 ).eq.3)then
sfsgs2l (n)-fsgs2(icol(n)-1 )+fsgs2(icol(n))
sfsgs3l (n)-fsgs3(icol(n)-2)+fsgs3(ico(n)-1 )+fsgs3(icol(n))
sfsgs4l (n)mfsgs4(icol(n)-2)+fsgs4(icoI(n)-1)
sfsgs5l (n)=fsgs5(icol(n)-2)

elseif (ic(n+ 1 ) .eq.4) then
sfsgs2l (n)=fsgs2(icol(n)-1 )+fsgs2(icol(n))
sfsgs3l (n)-fsgs3(icol(n)-2)+fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs4l (n)=fsgs4(icol(n)-2)+fsgs4(icol(n)-1 )+fsgs4(icol(n))
sfsgs5l (n)=fsgs5(icol(n)-2)+fsgs5(icol(n)-1)

elseif(ic(n+1 ).ge.5)then
sfsgs2l (n)=fsgs2(icol(n)-1 )+fsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n)-2)+fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs4l (n)-fsgs4(icol(n)-2)+fsgs4(icol(n)-1 )+fsgs4(icol(n))
sfsgs5l (n)-fsgs5(ico(n)-2)+fsgs5(icol(n)-1 )+fsgs5(icol(n))

endif
elseif(ic(n).eq.4)then

if(ic(n+1 ).eq.1 )then
sfsgs2l (n)-fsgs2(icol(n)-1)
sfsgs3l (n)=fsgs3(icol(n)-2)
sfsgs4l (n)=fsgs4(icol(n)-3)
sfsgs5l (n)=O.O

elseif(ic(n+1 ).eq.2)then
sfsgs2l (n)=fsgs2(icol(n)-1 )+fsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n)-2)+fsgs3(icol(n)-1)
sfsgs4l (n)=fsgs4(icoI(n)-3)+fsgs4(icol(n)-2)
sfsgs5l (n)=fsgs5(icol(n)-3)

elseif(ic(n+1 ).eq.3)then
sfsgs2l (n)=fsgs2(icol(n)-1 )+fsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n)-2)+fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs4l (n)=fsgs4(icol(n)-3)+fsgs4(icol(n)-2)+

+ fsgs4(icol(n)-1)
sfsgs5l (n)=fsgs5(icot(n)-3)+fsgs5(icol(n)-2)

elseif(ic(n+1 ).eq.4)then
sfsgs2l (n)=fsgs2(icol(n)-1 )+fsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n)-2)+fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs4l (n)=fsgs4(icol(n)-3)+fsgs4(icol(n)-2)+

+ fsgs4(icol(n)-1 )+fsgs4(icol(n))
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sfsgs5l (n)-fsgs5(icol(n)-3)+fsgs5(icoI(n)-2)+
+ fsgs5(icol(n)-1)

elseif(ic(n+ ) .ge.5)then
sfsgs2l (n)-fsgs2(icol(n)-1 )+fsgs2(icol(n))
sfsgs3l (n)-fsgs3(icol(n)-2)+fsgs3(icol(n)-1 )+fsgs3(ical(n))
sfsgs4l (n)=fsgs4(icol(n)-3)+fsgs4(ico I(n)-2)+

+ fsgs4(icol(n)-1 )+fsgs4(icol(n))
sfsgs5l (n)=fsgs5(icol(n)-3)+fsgs5(icol(n)-2)+

+ fsgs5(icol(n)-1 )+fsgs5(icol(n))
endif

elseif(ic(n) .ge.5)then
if(ic(n+1 ).eq.1 )then
sfsgs2l (n)=fsgs2(icol(n)-1)
sfsgs3l (n)=fsgs3(icol(n)-2)
sfsgs4l (n)=fsgs4(icol(n)-3)
sfsgs5l (n)=fsgs5(icol(n)-4)

elseif(ic(n+1 ).eq.2)then
sfsgs2l (n)=fsgs2(icol(n)-1 )+fsgs2(icoI(n))
sfsgs3l (n)=fsgs3(icol(n)-2)+fsgs3(icol(n)-1)
sfsgs4l (n)=fsgs4(icol(n)-3)+fsgs4(icol(n)-2)
sfsgs5l (n)-fsgs5(icol(n)-4)+fsgs5(icol(n)-3)

elseif(ic(n+ ) .eq.3)then
sfsgs2l (n)=fsgs2(icol(n)-1 ).ifsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n)-2)+fsgs3(ico(n)-1 )+fsgs3(icoI(n))
sfsgs4l (n)=fsgs4(icol(n)-3)+fsgs4(icol(n)-2)+

+ fsgs4(icol(n)-1)
sfsgs5l (n)=fsgs5(icol(n)-4)+fsgs5(icol(n)-3)+

+ fsgs5(icol(n)-2)
elseif(ic(n+1 ).eq.4)then
sfsgs2l (n)=fsgs2(icol(n)-1 )+fsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n)-2)+fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs4l (n)=fsgs4(icol(n)-3)+fsgs4(icol(n)-2)i.

+ fsgs4(icol(n)-1 )+fsgs4(icol(n))
sfsgs5l (n)=fsgs5(icol(n)-4)+fsgs5(icol(n)-3)+

+ fsgs5(icol(n)-2)+fsgs5(icol(n)-1)
elseif(ic(n+1 ).ge.5)then
sfsgs2l (n)=fsgs2(icol(n)-1 )+fsgs2(icol(n))
sfsgs3l (n)=fsgs3(icol(n)-2)+fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs4l (n)=fsgs4(icol(n)-3)+fsgs4(ical(n)-2)+

+ fsgs4(icol(n)-1 )+fsgs4(icol(n))
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sfsgs5l (n)=fsgs5(icol(n)-4)+fsgs5(icol(n)-3)+
+ fsgs5(icol(n)-2)+fsgs5(icol(n)-1 )+fsgs5(icol(n))

endif
endif
sfsggl (n).sfsgsl 1 (n)+sfsgs2l (n)+sfsgs3l (n)+sfsgs4l (n)+

+ sfsgs5l (n)
210 continue

*Calculate numerators for broad group down scatter g-g+2

if(nbg.Ie.2)goto 260
do 220 n=1 ,nbg-2

if (ic(n).eq. 1 )then
if (ic(n+1 ).eq. 1 )then

if(ic(n+2).eq. 1 )then
sfsgs22(n)-fsgs2(icol(n))
sfsgs32(n)=O.0
sfsgs42(n)=O.0
sfsgs52(n)=0.0

elseif(ic(n+2) .eq.2)then
sfsgs22(n)=fsgs2(ico(n))
sfsgs32(n)=fsgs3(icol(n))
sfsgs42(n)=O.0
sfsgs52(n)=0.0

elseif(ic(n+2) .eq.3)then
sfsgs22(n)=fsgs2(icol(n))
sfsgs32(n)=fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n))
sfsgs52(n)=0.0

elseif(ic(n+2) .ge.4)then
sfsgs22(n)=fsgs2(icol(n))
sfsgs32(n)=fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n))
sfsgs52(n)=fsgs5(icol(n))

endif
elseif(ic(n+1 ).eq.2)then

if(ic(n+2). eq. 1 )then
sfsgs22(n)=0.0
sfsgs32(n)=fsgs3(icol(n))

118



sf sgs42(n).O .0
sfsgs52(n).0.

elseif(ic(n+2) .eq.2)then
sfsgs22(n).O
sfsgs32(n)-fsgs3(icol(n))
sfsgs42(n)-fsgs4(icol(n))
sfsgs52(n).O

elseif(ic(n+2) .ge.3)then
sfsgs22(n).O.0
sfsgs32(n)-fsgs3(icol(n))
sfsgs42(n)-fsgs4(icol(n))
sfsgs52(n)-fsgs5(icol(n))

endif
elseif(ic(n+1 ).eq.3)then

if(ic(n+2). eq. 1 )then
sfsgs22(n).0.
sfsgs32(n)=.0.
sfsgs42(n)=fsgs4(icol(n))
sfsgs52(n)=O.O

elseif(ic(n+2) .ge.2)then
sfsgs22(n)-O.O
sfsgs32(n)-O.O
sfsgs42(n)=fsgs4(icol(n))
sfsgs52(n)=fsgs5(icol(n))

endif
elseif (ic(n+ 1 ).eq.4) then

sfsgs22(n)=O.0
sfsgs32(n)=O.O
sfsgs42(n)=O.O
sfsgs52(n)=fsgs5(icol(n))

elseif(ic(n+1 ).ge.5)then
sfsgs22(n)=O.O
sfsgs32(n)=O.O
sfsgs42(n)..O.O
sfsgs52(n)=O.O

endif
elseif(ic(n) .eq.2)then

if(ic(n+1 ).eq.1 )then
if(ic(n +2). eq. 1 )then

sfsgs22(n)=fsgs2(icol(n))
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sfsgs32(n)-fsgs3(icol(n)-1)
sfsgs42(n)-O.O
sfsgs52(n)=.O.o

elseif (ic(n+2) .eq.2)then
sfsgs22(n).fsgs2(ico(n))
sfsgs32(n)-fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs42(n)-fsgs4(ico(n)-1)
sfsgs52(n).O.O

elseif(ic(n+2) .eq.3)then
sfsgs22(n)mfsgs2(icol(n))
sfsgs32(n)-fsgs3(ico(n)-l1)+fsgs3(icoI(n))
sfsgs42(n)-fsgs4(icol(n)-1 )+fsgs4(icol(n) )
sfsgs52(n)=fsgs5(icol(n)-1)

elseif(ic(n+2) .ge.4)then
sfsgs22(n)=fsgs2(icol(n))
sfsgs32(n)=fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n)-1 )+fsgs4(icol(n))
sfsgs52(n)=fsgs5(icol(n)-1 )+fsgs5(icol(n))

endif
else if (ic(n+ 1 ).eq.2)the n

if(ic(n+2) .eq. 1 )then
sfsgs22(n)-O.O
sfsgs32(n)=fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n)-1)
sfsgs52(n)=O.O

elseif(ic(n+2) .eq.2)then
sfsgs22(n)=O.O
sfsgs32(n)=fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n)-1 )+fsgs4(icot(n))
sfsgs52(n)=fsgs5(icol(n)-1)

elseif (ic(n+2) .ge.3)then
sfsgs22(n)=O.O
sfsgs32(n)=fsgs3(icoI(n))
sfsgs42(n)=fsgs4(icol(n)-1 )+fsgs4(icol(n))
sfsgs52(n)=fsgs5(ico(n)-1 )-*fsgs5(icol(n))

endif
elseif (ic(n+1 ).eq.3)then
if (ic(n+2).eq. 1 )then

sfsgs22(n)=O.O
sfsgs32(n)=O.O
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sfsgs42(n).fsgs4(icol(n))
sfsgs52(n)=fsgs5(icol(n)-1)

elseif(ic(n+2) .ge.2)then
sfsgs22(n).O.O
sfsgs32(n)-O.O
sfsgs42(n)=fsgs4(icol(n))
sfsgs52(n)=fsgs5(icol(n)-1 )+fsgs5(icol(n))

endif
elseif(ic(n+ ) .eq.4)then

sfsgs22(n)=O.O
sfsgs32(n)=O.O
sfsgs42(n)=O.O
sfsgs52(n)=fsgs5(icol(n))

elseif(ic(n+1 ).ge.5)then
sfsgs22(n)=O.O
sfsgs32(n)=O.O
sfsgs42(n)=O.O
sfsgs52(n)=O.O

endif
elseif(ic(n) .eq.3)then

it(ic(n+1 ).eq.1 )then
if(ic(n+2).eq.1 )then
sfsgs22(n)=fsgs2(icol(n))
sfsgs32(n)=fsgs3(icol(n)-1)
sfsgs42(n)=fsgs4(icol(n)-2)
sfsgs52(n)=O.O

elseif(ic(n+2) .eq.2)then
sfsgs22(n)=fsgs2(icol(n))
sfsgs32(n)=fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n)-2)+fsgs4(icol(n)-1)
sfsgs52(n)=fsgs5(icol(n)-2)

elseif (ic(n+2) .eq.3)then
sfsgs22(n)=fsgs2(icol(n))
sfsgs32(n)=fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n)-2)+fsgs4(icol(n)-1 )+

+ fsgs4(icol(n))
sfsgs52(n)=fsgs5(icol(n)-2)+fsgs5(icol(n)-1)

elseif (ic(n+2) .ge .4)then
sfsgs22(n)=fsgs2(icol(n))
sfsgs32(n)=fsgs3(icol(n)-l1)+fsgs3(icot(n))
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sfsgs42(n)=fsgs4(icol(n)-2)+fsgs4(icol(n)-1 )+
+ fsgs4(icot(n))

sfsgs52(n)-fsgs5(icol(n)-2)+fsgs5(icol(n)-1 )+
+ fsgs5(icol(n))

endif
elseif(ic(n+ ) .eq.2)then

if(ic(n+2).eq. 1 )then
sfsgs22(n)=O.O
sfsgs32(n)=fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n)-1)
sfsgs52(n)=fsgs5(icol(n)-2)

elseif(ic(n+2) .eq.2)then
sfsgs22(n)=O.O
sfsgs32(n)=fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n)-1 )+fsgs4(ical(n))
sfsgs52(n)=fsgs5(icol(n)-2)+fsgs5(icol(n)-1)

elseif(ic(n+2) .ge.3)then
sfsgs22(n)=O.O
sfsgs32(n)=fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n)-1 )+fsgs4(icol(n))
sfsgs52(n)=fsgs5(icol(n)-2)+fsgs5(icol(n)-1 )+

+ fsgs5(icot(n))
endif

elseif(ic(n+1 ).eq.3)then
if(ic(n+2).eq. 1 )then
sfsgs22(n)=O.O
sfsgs32(n)=O.O
sfsgs42(n)=fsgs4(icol(n))
sfsgs52(n)=fsgs5(icol(n)-1)

elseif (ic(n+2) .ge.2)then
sfsgs22(n)=O.O
sfsgs32(n)=O.O
sfsgs42(n)=fsgs4(icol(n))
sfsgs52(n)=fsgs5(icol(n)-1 )+fsgs5(icol(n))

endif
elseif (ic(n+ 1 ).eq.4) then

sfsgs22(n)=O.O
sfsgs32(n)=O.O
sfsgs42(n)=O.O
sfsgs52(n)=fsgs5(icol(n))

1 22



elseif(ic(n+1 ).ge.5)then
sfsgs22(n)=O.O
sfsgs32(n)=O.O
sfsgs42(n)=O.O
sfsgs52(n)=O.O

endif
elseif(ic(n) .ge.4)then

if(ic(n+1 ).eq. 1 )then
if(ic(n+2). eq. 1 )then
sfsgs22(n)=fsgs2(icol(n))
sfsgs32(n)-fsgs3(icol(n)-1)
sfsgs42(n)=fsgs4(icol(n) -2)
sfsgs52(n)=fsgs5(icol(n)-3)

elseif(ic(n+2).eq.2)then
sfsgs22(n)=fsgs2(ico(n))
sfsgs32(n)=fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n)-2)+fsgs4(icol(n)-1)
sfsgs52(n)=fsgs5(icol(n) -3)+fsgs5(icol(n)-2)

elseif(ic(n+2) .eq.3)then
sfsgs22(n)=fsgs2(icol(n))
sfsgs32(n)=fsgs3(icol(n)-1 )+fsgs3(icoI(n))
sfsgs42(n)=fsgs4(icol(n)-2)+fsgs4(icol(n)-1 )+

+ fsgs4(icol(n))
sfsgs52(n)=fsgs5(icol(n)-3)+fsgs5(icol(n)-2)+

+ fsgs5(icol(n)-1)
elseif(ic(n+2) .ge.4)then

sfsgs22(n)=fsgs2(icol(n))
sfsgs32(n)=fsgs3(icol(n)-1 )+fsgs3(icol(n))
sfsgs42(n)=fsgs4(ico(n)-2)+fsgs4(ico(n)-1 )+

+ fsgs4(icoI(n))
sfsgs52(n)=fsgs5(icol(n)-3)+fsgs5(icol(n)-2)+

+ fsgs5(icol(n)-1 )+fsgs5(icol(n))
endif

elseif (ic(n+1 ).eq.2)then
if(ic(n+2). eq. 1 )then

sfsgs22(n)=O.O
sfsgs32(n)=fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n)-1)
sfsgs52(n)=fsgs5(icol(n)-2)

elseif(ic(n+2) .eq.2)then
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sfsgs22(n)=O.O
sfsgs32(n).fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n)-1 )+fsgs4(icol(n))
sfsgs52(n)-fsgs5(icol(n)-2)+fsgs5(icol(n)-1)

elseif(ic(n+2) .ge.3)then
sfsgs22(n)=O.O
sfsgs32(n)=fsgs3(icol(n))
sfsgs42(n)=fsgs4(icol(n)-1 )+fsgs4(icoI(n))
sfsgs52(n)-fsgs5(icol(n)-2)+fsgs5(icol(n)-1 )+

+ fsgs5(icol(n))
endif

elseif (ic(n+ ) .eq.3)then
if(ic(n+2).eq. 1 )then

sfsgs22(n)=O.O
sfsgs32(n)=O.O
sfsgs42(n)=fsgs4(icol(n))
sfsgs52(n)=fsgs5(icol(n)-1)

elseif(ic(n+2) .ge.2)then
sfsgs22(n)-O.O
sfsgs32(n)=O.O
sfsgs42(n)=fsgs4(icol(n))
sfsgs52(n)=fsgs5(icol(n)-1 )+fsgs5(icol(n))

endif
elseif(ic(n+1 ).eq.4)then

sfsgs22(n)=O.O
sfsgs32(n)=O.O
sfsgs42(n)=O.O
sfsgs52(n)=fsgs5(icol(n))

elseif(ic(n+1 ).ge.5)then
sfsgs22(n)=O.O
sfsgs32(n)=O.O
sfsgs42(n)=O.O
sfsgs52(n)=O.O

endif
end if
sfsgg2(n)=sfsgs22(n)+sfsgs32(n)+sfsgs42(n) .ssfsgs52(n)

220 continue

*Calculate numerators for broad group down scatter g-g+3.
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if (nbg.Ie.3)goto 260
do 230 n=1 ,nbg-3

if(ic(n).eq.1 )then
if(ic(n+1 ).eq.1 )then
if (ic(n+2).eq. 1 )then

if(ic(n+3).eq.1 )then
sfsgs33(n)=fsgs3(icol(n))
stsgs43(n)=0.0
sfsgs53(n)=O.0

elseif (ic(n+3) .eq.2)then
sfsgs33(n)=fsgs3(icoI(n))
sfsgs43(n)=fsgs4(icoI(n))
sfsgs53(n)=0.0

elseif(ic(n+3) .ge.3)then
sfsgs33(n)=fsgs3(icol(n))
sfsgs43(n)=fsgs4(icoI(n))
sfsgs53(n)=fsgs5(icol(n))

endif
elseif(ic(n+2) .eq.2)then

if(ic(n+3).eq.1 )then
sfsgs33(n)=O.0
sfsgs43(n)=fsgs4(icol(n))
sfsgs53(n)=0.O

elseif(ic(n+3).ge.2)then
sfsgs33(n)=0.O
sfsgs43(n)=fsgs4(icol(n))
sfsgs53(n)=fsgs5(icol(n))

endif
elseif(ic(n+2) .eq.3)then

sfsgs33(n)=0.0
sfsgs43(n)=0.0
sfsgs53(n)=fsgs5(icol(n))

elseif (ic(n+2) .ge.4)then
sfsgs33(n)=0.0
sfsgs43(n)=0.0
sfsgs53(n)=0.0

endif
elseif (ic(n+1 ).eq.2)then

if(ic(n+2) .eq. 1 )then

1 25



if(ic(n+3).eq. 1 )then
sfsgs33(n)=O.O
sfsgs43(n)=fsgs4(icol(n))
sfsgs53(n).O

elseif(ic(n+3) .ge.2)then
sfsgs33(n)=.O
sfsgs43(n)=fsgs4(icol(n))
sfsgs53(n)=fsgs5(icol(n))

endif
elseif(ic(n+2) .eq.2)then

sfsgs33(n)=0.0
sfsgs43(n).0.
sfsgs53(n)=fsgs5(icol(n))

elseif(ic(n+2) .ge.3)then
sfsgs33(n)=O.O
sfsgs43(n)=O.O
sfsgs53(n)=O.O

endif
elseif (ic(n+ 1 ).eq.3) then

if(ic(n+2). eq. 1 )then
sf sgs33(n) =0 .
sfsgs43(n)=O.O
sfsgs53(n)=fsgs5(ico(n))

elseif(ic(n+2) .ge.2)then
sfsgs33(n)=O.O
sfsgs43(n)=O.O
sfsgs53(n)=0.0

endif
elseif(ic(n+ ) .ge.4)then

sfsgs33(n)=0.O
sfsgs43(n)=O.O
sfsgs53(n)=O.O

endif
elseif(ic(n) .eq.2)then

if(ic(n+1 ).eq.1 )then
if(ic(n+2). eq. 1 )then

if(ic(n+3). eq. 1 )then
sfsgs33(n)=fsgs3(icol(n))
sfsgs43(n)=fsgs4(icol(n)-1)
sfsgs53(n)=O.O
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elseif(ic(n+3) .eq.2)then
sfsgs33(n)-fsgs3(icol(n))
sfsgs43(n)-fsgs4(ico(n)-1 )+fsgs4(icol(n))
sfsgs53(n)=.fsgs5(icol(n)-1)

elseif(ic(n+3).ge.3)then
sfsgs33(n)-fsgs3(icol(n))
sfsgs43(n)-fsgs4(icol(n)-1 )+fsgs4(icol(n))
sfsgs53(n)=fsgs5(icol(n)-1 )+fsgs5(icol(n))

endif
else if (ic(n+2) .eq.2)then

if(ic(n+3).eq. 1 )then
sfsgs33(n)=O.O
sfsgs43(n)=fsgs4(icol(n))
sfsgs53(n)=fsgs5(icol(n)-1)

elseif(ic(n+3) .ge.2)then
sfsgs33(n)=O.O
sfsgs43(n)=fsgs4(icol(n))
sfsgs53(n)=fsgs5(icol(n)-1 )-,fsgs5(icol(n))

endif
elseif(ic(n+2) .eq.3)then

sfsgs33(n)=O.O
sfsgs43(n)=O.O
sfsgs53(n)=fsgs5(icol(n))

elseif(ic(n+2) .ge.4)then
sfsgs33(n)=O.O
sfsgs43(n)=O.O
sfsgs53(n)=O.O

endif
elseif (ic(n+1 ).eq.2)then

if(ic(n+2).eq. 1 )then
if(ic(n+3). eq. 1 )then

sf sgs33(n)=O .0
sfsgs43(n)=fsgs4(icol(n))
sfsgs53(n)=fsgs5(icol(n)-1)

elseif(ic(n+3) .ge .2)then
sfsgs33(n)=.0.
sfsgs43(n)=fsgs4(icol(n))
sfsgs53(n)=fsgs5(icol(n)-1 )+fsgs5(icot(n))

endif
elseif(ic(n+2) .eq.2)then
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sfsgs33(n).O.O
sfsgs43(n)=O.O
sfsgs53(n)=fsgs5(icol(n))

elseif(ic(n+2) .ge.3)then
sfsgs33(n)=O.O
sfsgs43(n)=O.O
sfsgs53(n)=O.O

endif
elseif(ic(n+1 ).eq.3)then

if(ic(n+2).eq.1 )then
sfsgs33(n)=O.O
sfsgs43(n).O.O
sfsgs53(n)=fsgs5(icol(n))

elseif(ic(n+2) .ge.2)then
sfsgs33(n)=O.O
sfsgs43(n)=O.O
sfsgs53(n)=O.O

endif
elseif(ic(n+ ) .ge.4)then

sfsgs33(n)=O.O
sfsgs43(n)=O.O
sfsgs53(n).O.O

endif
elseif(ic(n) .ge.3)then

if(ic(n+1 ).eq.1 )then
if(ic(n+2).eq. 1 )then

if(ic(n+3).eq.1 )then
sfsgs33(n)=fsgs3(icol(n))
sfsgs43(n)=fsgs4(icol(n)-1)
sfsgs53(n)=fsgs5(icol(n)-2)

elseif (ic(n+3) .eq.2)then
sfsgs33(n)=fsgs3(ico(n))
sfsgs43(n)=fsgs4(icol(n)-1 )+fsgs4(icol(n))
sfsgs53(n)=fsgs5(icol(n)-2)+fsgs5(icol(n)-1)

elseif(ic(n+3) .ge.3)then
sfsgs33(n)-fsgs3(icol(n))
sfsgs43(n)=fsgs4(icol(n)-1 )+fsgs4(icol(n))
sfsgs53(n)=fsgs5(icol(n)-2)+fsgs5(icol(n)-1 )+

+ fsgs5(icol(n))
endif

1 28



elseif(ic(n+2) .eq.2)then
if(ic(n+3).eq. 1 )then

sfsgs33(n).O.O
sfsgs43(n).fsgs4(icol(n))
sfsgs53(n)=fsgs5(ico(n)-1)

elseif(ic(n+3) .ge.2)then
sfsgs33(n)=O.O
sfsgs43(n)-fsgs4(icol(n))
sfsgs53(n)-fsgs5(icol (n)-1 )+fsgs5(icaI(n))

endif
elseif(ic(n+2) .eq.3)then

sfsgs33(n)-O.O
sfsgs43(n)=O.O
sfsgs53(n)=fsgs5(icol(n))

elseif(ic(n+2) .geA4)then
sfsgs33(n)=O.O
sfsgs43(n)=O.O
sfsgs53(n)=O.O

endif
elseif(ic(n+1 ).eq.2)then
if(ic(n+2) .eq.l1)then

if(ic(n+3).eq. 1 )then
sfsgs33(n)=O.O
sfsgs43(n)=fsgs4(icol(n))
sfsgs53(n)=fsgs5(icol(n)-1)

elseif(ic(n+3) .ge.2)then
sfsgs33(n)=O.O
sfsgs43(n)=fsgs4(icol(n))
sfsgs53(n)=fsgs5(icol(n)-1 )+fsgs5(icol(n))

endif
etseif(ic(n+2) .eq.2)then

sfsgs33(n)=O.O
sfsgs43(n)=O.O
sfsgs53(n)=fsgs5(icol(n))

elseif (ic(n+2) .ge.3)then
sfsgs33(n)=O.O
sfsgs43(n)=O.O
sfsgs53(n)=O.O

endif
elseif (ic(n+1 ).eq.3)then
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if(ic(n+2). eq.l1 )then
sfsgs33(n).0.
sfsgs43(n)-.0.
sfsgs53(n)=fsgs(icol(n))

elseif(ic(n+2) .ge.2)then
sfsgs33(n)=0.O
sfsgs43(n)=O.O
sfsgs53(n)=0.O

endif
elseif(ic(n+l ).ge.4)then

sfsgs33(n)=O.0
sfsgs43(n)=O.O
sfsgs53(n)=O.O

endif
endif
sfsgg3(n)=sfsgs33(n)+sfsgs43(n)+sfsgs53(n)

230 continue

*Calculate the numerators for broad group down scatter g-g+4

if(nbg.Ie.4)goto 260
do 240 n-i ,nbg-4

if (ic(n).eq. 1 )then
if (ic(n+1 ).eq. 1 )then

if(ic(n+2). eq. 1 )then
if (ic(n+3).eq. 1 )then

if(ic(n+4).eq. 1 )then
sfsgs44(n)=fsgs4(icol(n))
sfsgs54(n)=0.0

elseif(ic(n+4) .ge.2)then
sfsgs44(n)=fsgs4(icol(n))
sfsgs54(n)=fsgs5(icol(n))

endif
elseif(ic(n+3) .eq.2)then

sfsgs44(n)=0.0
sfsgs54(n)=fsgs5(icol(n))

elseif (ic(n+3) .ge.3)then
sfsgs44(n)=0.0
sfsgs54(n)=0.0
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endif
elseif(ic(n+2) .eq.2)then

if(ic,(n+3). eq. 1 )then
sfsgs44(n)=O.O
sfsgs54(n)-fsgs5(icol (n))

elseif(ic(n+3) .ge.2)then
sfsgs44(n)=.0.
sfsgs54(n)=0.0

endif
elseif(ic(n+2) .ge.3)then
sfsgs44(n).0.
sfsgs54(n)=O.O

endif
elseif (ic(n+1 ).eq.2)then

if(ic(n+2). eq. 1 )then
if(ic(n+3).eq.1 )then
sfsgs44(n)=O.0
sfsgs54(n)=fsgs5(icol(n))

elseif(ic(n+3) .ge.2)then
sfsgs44(n)=O.0
sfsgs54(n)=0 .0

endif
elseif(ic(n+2) .ge.2)then

sfsgs44(n)=0 .0
sfsgs54(n)=O.0

endif
elseif(ic(n+1 ).ge.3)then
sfsgs44(n)=0.0
sfsgs54(n)=0.0

endif
elseif(ic(n) .ge.2)then

if(ic(n+1 ).eq.1 )then
if(ic(n+2).eq.1 )then

if(ic(n+3). eq. 1 )then
if(ic(n+4).eq. 1 )then

sfsgs44(n)=fsgs4(icol(n))
sfsgs54(n)=.fsgs5(icol(n)-1)

elseif(ic(n+4) .ge.2)then
sfsgs44(n)=fsgs4(icol(n))
sfsgs54(n)=fsgs5(icol(n)-l1)+fsgs5(icol(n))
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endif
elseif (ic(n+3) .eq.2)then

sf-sgs44(n)=O.O
sfsgs54(n)-fsgs5(icol(n))

elseif(ic(n+3).ge.3)then
sfsgs44(n)=O.O
sfsgs54(n)=O.O

endif
elseif(ic(n+2) .eq.2)then

if(ic(n+3).eq. 1 )then
sfsgs44(n)=O.O
sfsgs54(n)=fsgs5(icol(n))

elseif(ic(n+3) .ge.2)then
sfsgs44(n)=O.O
sfsgs54(n)=O.O

endif
elseif (ic(n+2) .ge.3)then
sfsgs44(n)=O.O
sfsgs54(n)=O.o

endif
elseif(ic(n+1 ).eq.2)then

if(ic(n+2). eq. 1 )then
if(ic(n+3). eq. 1 )then

sfsgs44(n)=O.O
sfsgs54(n)=fsgs5(icol(n))

else if (ic(n+3).ge .2)then
sfsgs44(n)=O.O
sfsgs54(n)=O.O

endif
else if (ic(n+2) .ge.2)th en

sfsgs44(n)=O.O
sfsgs54(n)=O.O

endif
elseif (ic(n+1 ) .ge.3)then

sfsgs44(n)=O.O
sfsgs54(n)=O.O

endif
endif
sfsgg4(n)=sfsgs44(n)+sfsgs54(n)

240 continue
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*Calculate numerators for broad group down scatter g-g+5

if(nbgle.5)goto 260
do 250 n~1 ,nbg-5

if(ic(n+1 ).eq.1 )then
if (ic(n+2).eq. 1 )then
if(ic(n+3).eq.1 )then

if(ic(n+4) .eq. 1)then
sfsgs55(n)-fsgs5(icol (n))

else
stsgs55(n)=0.0

endif
else

sfsgs55(n)=0.0
endif

else
sfsgs55(n)=.0.

endif
else

sfsgs55(n)=0.0
endif

250 continue

*Calculate cross sections for each broad group.

260 do 270On=1,nbg
nusigf(n)=sfnusf(n)/sflux(n)
sigt(n)=sfsigt(n)/sflux(n)
siga(n)=sfsiga(n)/sflux(n)
sgsgg(n)=sfsgg(n)/sflux(n)
sgsggl (n)=sfsggl (n)/sflux(n)
sgsgg2(n)=sfsgg2(n)/sflux(n)
sgsgg3(n)=sfsgg3(n)/sflux(n)
sgsgg4(n)=sfsgg4(n)/sf lux(n)
sgsgg5(n)=sfsgs55(n)/sflux(n)

270 continue
*For converting micro to macro cross sections.
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if(adh.ne.0)then
do 275 n-i ,nbg

nusigf(n)-nusigf(n)*adh
sigt(n)=sigt(n)*adh
siga(n)=siga(n)*adh
sgsgg(n)=sgsgg(n)*adh
sgsggl (n)=sgsggl (n)*adh
sgsgg2(n)=sgsgg2(n)*adh
sgsgg3(n)=sgsgg3(n)*adh
sgsgg4(n)=sgsgg4(n)*adh
sgsgg5(n)=sgsgg5(n)*adh

275 continue
endif

*Provide formatted output to the output file 'collapse.dat'

write(1 1,400)
write(1 1,410) name
if(adh.ne.0) write(1 1,405)
write(1 1,400)
write(1 1,470)
write(1 1,41 5)(ic(n),n=1 ,nbg)
write(1 1,470)
write(* ,*)'SCATTER MATRIX? INSCATTE R=1 / OUTSCATTER=2.'
read(*,*) sm
if(sm.eq.2)then
do 280 n=1 ,nbg

write(1 1,420) n
write(1 1,470)
write(1 1,430)
write( 1,440) nusigf(n) ,sigt(n) ,siga(n)
write(1 1,470)
write(1 1,450)
write(1 1,470)
write(1 1,460) sgsgg(n),sgsggl (n),sgsgg2(n)
write(1 1,470)
write( 11,460) sgsgg3(n) ,sgsgg4(n) ,sgsgg5(n)
write(1 1,470)

280 continue
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elseif (sm.eq. 1 )then
do 290 n=1 ,nbg

write(1 1,420) n
write(1 1,470)
write(1 1,430)
write(1 1 ,440) nusigf(n),sigt(n),siga(n)
write(1 1,470)
write(1 1,455)
write(1 1,470)
if(n.eq.1 )write(1 1,460) sgsgg(n)
if(n.eq.2)write(1 1,460) sgsgg(n),sgsggl (n-1)
if(n.eq.3)write(1 1,460) sgsgg(n),sgsggl (n-i ),sgsgg2(n-2)
if(n .eq.4)then
write(1 1,460) sgsgg(n),sgsggl (n-i ),sgsgg2(n-2)
write(1 1,470)
write(1 1,460) sgsgg3(n-3)

elseif(n.eq.5)then
write(1 1,460) sgsgg(n),sgsggl (n-i ),sgsgg2(n-2)
write(1 1,470)
write(1 1,460) sgsgg3(n-3),sgsgg4(n-4)

else if(n .ge.6)then
write(1 1,460) sgsgg(n),sgsggl (n-i ),sgsgg2(n-2)
write(1 1,470)
write(1 1,460) sgsgg3(n-3),sgsgg4(n-4),sgsgg5(n-5)

endif
write(1 1,470)

290 continue
endif

390 format(l x,'Input TWODANT defined ICOL for NBG',13)
400

405 format(1 5x,'!!!CONVERTED TO,MACRO XSECS'!!')
410 format(1 5x,a)
415 format(1 Ox,'ICOL=',1 613)
420
format(5xI******** *******G ROUp, 3,*************
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430 format(1 Ox,'NUSIGF,l 11x,'SIG1',1 1x,'SIGA')
440 format(6x,el 5.7,3x,el 5.7,3x,el 5.7)
450 format(5x,'SCATTER ING MATRIX; g-g, g-g+1 ....g-g+5')
455 format(5x,'SCATTER ING MATRIX: g--g, g--g-1 ,...g--g-5')
460 format(5x,3(el 5.7,3x))
470 format("')

stop
end
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Appendix 4, Flux Volume Weighting FORTRAN 77 Program.

" This program reads the EDTOGX.DAT file prepared by TWODANT
" and calculates the volume average flux for each material zone
" in the problem. As is this program only works for homogeneous
" spheres.

DIMENSION RDAVE(200),XMESH(30),IHX(30),IDCS(25)
DIMENSION FISRT(1 O000),FLUX(1 OO0,20),FLUXN(1 0000,20)
DIMENSION IHXZ(5),DELTA(5),V(200),SUMV(5)
DIMENSION VF(200,20),SUMVF(5,20),VAFLUX(5,20)
DIMENSION I0(1 6),ICOL(1 6),SFLUX(1 0000,20)
DIMENSION HTITLE(10,10)
CHARACTER*40 NAME
OP EN(UN IT=4, FlLE=' EDTOGX. DAl-,STATUS='OLD')
OPEN(UNIT=5,FILE='VAFLUX.DATXSTATUS='NEW')
OPEN(UNIT=6,FILE='FLUX. PL1',STATUS='NEW')

*Read in data from EDTOGX.DAT [reference LA-9184-M,rev, app. C].

READ(4,-) NTITLE
*DIMENSION HTITLE(10,NTITLE)

DO 10 N=1,NTITLE
READ(4,20)(HTITLE(I,N),1=1,1 0)

10 CONTINUE
20 FORMAT(20A4)

READ(4,*) IDIMEN,ISADJ,NGROUP,IM,IT,JM,JT,NDUM1 ,NDUM2,
+ IFISS,IGEOM

*DIMENSION RDAVE(IT)
READ(4,400) (RDAVE(N),N=1 ,IT)

READ(4,410)(IHX(l),l=1 ,IM)

READ(4,400) (XMESH(IZ),IZ=1 ,IM+1)

READ(4,41 0)(IDCS(l),l=1 ,IM*JM)

IF(IFISS.GT.0) READ(4,400)(FISRT(l),I=1 ,IT*JT)



*DIMENSION FLUX(ITJT,NGROUP)
DO 60 N-i INGROUP
READ(4,400)(FLUX(I,N),I=1 ,IT*JT)

60 CONTINUE
400 FORMAT(6E12.5)
410 FORMAT(1 216)

*Calculate volume average flux.

IHXZ(0)=0
DO 100 IZ=1,IM

DELTA(IZ)=(XMESH(IZ+1 )-XMESH(IZ))/IHX(IZ)
IHXZ(IZ)=IHX(IZ)+IHXZ(IZ-1)
SUM V(IZ)=0.0
DO 105 N=1 ,NGROUP

SUM VF(IZ,N)=0.0
105 CONTINUE
100 CONTINUE

P1=3.1415927
R1I-0.0

IF(IGEOM.EQ.3)THEN
DO 110 IZ=1,IM

DO 120 I=IHXZ(IZ-1),IHXZ(IZ)
R2=R1 +DELTA(IZ)
if (r2.eq.0)goto 110
V(l)=(R2**3-R1 **3)*40*PI/3.0
SUM V(IZ).SUM V(IZ)+V(l)
DO 130 N-i ,NGROUP

VF(l,N)=V(l)*FLUX(l,N)
SUM VF(IZ,N) =SU MVF(IZ, N)+VF(I,N)

130 CONTINUE
R1 =R2

120 CONTINUE
DO 140 N=1,NGROUP

VAFLUX(IZ,N)=SUMVF(IZ,N)/SUMV(IZ)
140 CONTINUE
110 CONTINUE
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ENDIF

*Provide output to VAFLUX.DAT.

DO 200 N-i ,NTITLE
WRITE(5,21 0)(HTITLE(I,N),I=1, 10)

200 CONTINUE
210 FORMAT(20A4)

WRITE(5,*)b
WRITE(5,225)
DO 220 N-i INGROUP

WRITE(5,230)N,(IZ,VAFLUX(IZ,N),IZ=1 ,IM)
220 CONTINUE

225 FORMAT(2X,'GROUP',1 X,3('ZONE',3X,'VAFLUX',4X))
230 FOR MAT(4X, 12,3X,3(I2,1 X,E1 2.5,2X))

*The next part is for generating normalixed flux plots.

WRITE(*,*)IDO YOU WANT TO PLOT FLUXES; 1 -YES, 2-NO'
READ(*,*) Z
IF(Z.EQ.2)GOTO 390
WRITE(*,*)IINPUT PROBLEM NAME INCLOSED IN APOSTROPHES'
READ(*,*) NAME

*Normalize fluxes based on the thermal group center line flux.

WRITE(*,*)'DO YOU WANT TO NORMALIZE FLUXES; 1 -YES, 2-NO'
READ(*,-) NORM
IF(NORM.NE.1 )GOTO 242
DO 235 N=1 ,NGROUP

DO 240 I-1,IT
FLUXN(I,N)-FLUX(I,N)/FLUX(1 ,NGROUP)

240 CONTINUE
235 CONTINUE

*The next section sums fluxes over broad groups for use in
*plotting a comparison with collapsed group fluxes.
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242 WRITE(-,-)'DO YOU WANT TO SUM FLUXES INTO BROAD GROUPS;
+ 1 =YES, 2=-NO'
READ(-,-) SUM
IF(SUM.EQ.2)GOTO 295

245 WRlTE(*,*)'HOW MANY BROAD GROUPS?'
READ(*,*) NBG
WRITE(*,*)'NUMBER OF GROUPS IN EACH BROAD GROUP [tOOL]?
READ(*,*) (IC(N),N=l ,NBG)
100=0.0
DO 250 N-i ,NBG

100=100+10(N)
ICOL(N)=ICO

250 CONTINUE
IF(ICO.NE.NGROUP)THEN

WRITE(*,*)USUM OF ICOL.NE.NGROUP!'
GOTO 245

ENDIF
*Sum fluxes over the broad groups.

DO 255 1=1 ,IT
DO 260 N=1 ,NBG
SFLUX(I ,N)=0.O
IF(N.EQ.1 )THEN
DO 265 J=1 ,ICOL(N)

SFLUX(I ,N)=SFLUX(I ,N)+FLUX(I ,J)
265 CONTINUE

ELSE
DO 270 J=ICOL(N-1 )+1 ,ICOL(N)

SFLUX(I ,N)=SFLUX(I ,N)+FLUX(l,J)
270 CONTINUE

ENDIF
260 CONTINUE
255 CONTINUE
*Normalize summed broad group fluxes based on "thermal group".

IF(NORM.NE.1 )GOTO 282
DO 275 N=1 ,NBG

DO 280 I=1,IT
FLUXN(I,N)=SFLUX(l,N)/SFLUX(1 ,NBG)

280 CONTINUE
275 CONTINUE
282 NGROUP-NBG
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*Provide output to FLUX. PLT for use in generating a telegraph
*plot of the group fluxes.
295 WRlTE(6,*)'gen a x numbered y numbered plot.'

WRITE(6,*)'page layout =vrh.'
WRlTE(6,*)'title is "',NAME .."..'
WRITE(6,*)lx axis label is "RADIUS [cm]".'
WRITE(6,*)uy axis label is "FLUX".'
DO 300 N=1 INGROUP
IF(N.LT.1 6)THEN
WRITE(6,350) N,N,N
ELSE
WRITE(6,360) N,N

ENDIF
300 CONTINUE

DO 310 N=1,NGROUP
IF(NORM.EQ.1) WRITE(6,370) N,N,RDAVE(N),FLUXN(N,N)
IF(NORM.NE.1) WRITE(6,370) N,N,RDAVE(N),FLUX(N,N)

310 CONTINUE
WRITE(6,*)Iinput data.'
DO 320 N=1 )NGROUP
WRITE(6,380) N
DO 330 1=1 ,IT
IF(NORM.EQ.1) WRITE(6,*)RDAVE(l),',',FLUXN(l,N)
IF(NORM.NE.1) WRITE(6,*)RDAVE(l),',',FLUX(l,N)

330 CONTINUE
320 CONTINUE

WRITE(6,*)'eod.'
WRITE(6,*)'go.'

350 FORMAT(' curve', 12,' texture',12,', interpolation smooth,
+ delta .0003, symbol type',12,'.')

360 FORMAT(' curve', 12,' texture 1, interpolation smooth,
+ delta .0003, symbol type',12,.')

370 FORMAT(' message ',12,', text "',12,'", x=',F1 0.7,
+' Y=',F1O.7,', in coordinate units.')

380 FORMAT(' "group ',12,'"')
390 END
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